精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率,左、右焦点分别是,且椭圆上一动点的最远距离为,过的直线与椭圆交于两点.

1)求椭圆的标准方程;

2)当为直角时,求直线的方程;

3)直线的斜率存在且不为0时,试问轴上是否存在一点使得,若存在,求出点坐标;若不存在,请说明理由.

【答案】(1)(2)直线的方程为(3)存在,

【解析】

1)由椭圆的离心率,且椭圆上一动点的最远距离为,列出方程组,求得的值,即可得到椭圆的标准方程;

2)设直线,则,联立方程组,求得的值,即可求得直线的方程;

3)设,联立方程组,根据根与系数的关系,求得,再由斜率公式和以,即可求解点的坐标,得到答案.

1)由题意,椭圆的离心率,且椭圆上一动点的最远距离为

可得,解得,所以椭圆的标准方程为.

2)由题意可知,当不存在时,不符合题意.

设直线,则

,得,∴

,∴

直线的方程为.

3)设

,所以

,∴

,∴.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,若输入的m=1,则输出数据的总个数为(  )

A. 5 B. 6 C. 7 D. 8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】勒洛三角形是具有类似圆的定宽性的曲线,它是由德国机械工程专家、机构运动学家勒洛首先发现,其作法是:以等边三角形每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,三段弧围成的曲边三角形就是勒洛三角形.如图中的两个勒洛三角形,它们所对应的等边三角形的边长比为,若从大的勒洛三角形中随机取一点,则此点取自小勒洛三角形内的概率为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数与函数处有相同的切线,求实数的值;

(2)当时, ,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,已知抛物线上一点到焦点的距离为6,点为其准线上的任意一点,过点作抛物线的两条切线,切点分别为.

1)求抛物线的方程;

2)当点轴上时,证明:为等腰直角三角形.

3)证明:为直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆)的离心率是,点在短轴上,且

(1)球椭圆的方程;

(2)设为坐标原点,过点的动直线与椭圆交于两点。是否存在常数,使得为定值?若存在,求的值;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为椭圆的左、右焦点,动点的坐标为,过点的直线与椭圆交于两点.

(3)的坐标;

(4)若直线的斜率之和为0,求的所有整数值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知P是曲线上的点,Q是曲线上的点,曲线与曲线关于直线对称,M为线段PQ的中点,O为坐标原点,则的最小值为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若方程内有两个不等实根,求的取值范围(其中为自然对数的底);

2)令,如果图象与轴交于中点为,求证:.

查看答案和解析>>

同步练习册答案