【题目】如图1,四边形为直角梯形,,,,,,为线段上一点,满足,为的中点,现将梯形沿折叠(如图2),使平面平面.
(1)求证:平面平面;
(2)能否在线段上找到一点(端点除外)使得直线与平面所成角的正弦值为?若存在,试确定点的位置;若不存在,请说明理由.
【答案】(1)证明见解析;(2)存在点是线段的中点,使得直线与平面所成角的正弦值为.
【解析】
(1)在直角梯形中,根据,,得为等边三角形,再由余弦定理求得,满足,得到,再根据平面平面,利用面面垂直的性质定理证明.
(2)建立空间直角坐标系:假设在上存在一点使直线与平面所成角的正弦值为,且,,求得平面的一个法向量,再利用线面角公式求解.
(1)证明:在直角梯形中,,,
因此为等边三角形,从而,又,
由余弦定理得:,
∴,即,且折叠后与位置关系不变,
又∵平面平面,且平面平面.
∴平面,∵平面,
∴平面平面.
(2)∵为等边三角形,为的中点,
∴,又∵平面平面,且平面平面,
∴平面,
取的中点,连结,则,从而,以为坐标原点建立如图所示的空间直角坐标系:
则,,则,
假设在上存在一点使直线与平面所成角的正弦值为,且,,
∵,∴,故,
∴,又,
该平面的法向量为,
,
令得,
∴,
解得或(舍),
综上可知,存在点是线段的中点,使得直线与平面所成角的正弦值为.
科目:高中数学 来源: 题型:
【题目】某工厂为生产一种标准长度为的精密器件,研发了一台生产该精密器件的车床,该精密器件的实际长度为,“长度误差”为,只要“长度误差”不超过就认为合格.已知这台车床分昼、夜两个独立批次生产,每天每批次各生产件.已知每件产品的成本为元,每件合格品的利润为元.在昼、夜两个批次生产的产品中分别随机抽取件,检测其长度并绘制了如下茎叶图:
(1)分别估计在昼、夜两个批次的产品中随机抽取一件产品为合格品的概率;
(2)以上述样本的频率作为概率,求这台车床一天的总利润的平均值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了迎接2019年的高考,某学校进行了第一次模拟考试,其中五个班的考试成绩在500分以上的人数如下表,为班级,表示500分以上的人数
1 | 2 | 3 | 4 | 5 | |
20 | 25 | 30 | 30 | 25 |
(1)若给出数据,班级与考试成绩500以上的人数,满足回归直线方程,求出该回归直线方程;
(2)学校为了更好的提高学生的成绩,了解一模的考试成绩,从考试成绩在500分以上1,3班学生中,利用分层抽样抽取5人进行调研,再从选中的5人中,再选3名学生写出“经验介绍”文章,则选的三名学生1班一名,3班2名的概率.
参考公式:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的焦点为,,离心率为,点P为椭圆C上一动点,且的面积最大值为,O为坐标原点.
(1)求椭圆C的方程;
(2)设点,为椭圆C上的两个动点,当为多少时,点O到直线MN的距离为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱中,已知,,侧面.
(Ⅰ)求直线与底面所成角正切值;
(Ⅱ)在棱(不包含端点)上确定一点E的位置,
使得(要求说明理由);
(Ⅲ)在(Ⅱ)的条件下,若,求二面角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的左、右焦点分别为,,焦距为2,且经过点,斜率为的直线经过点,与椭圆交于,两点.
(1)求椭圆的方程;
(2)在轴上是否存在点,使得以,为邻边的平行四边形是菱形?如果存在,求出的取值范围,如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知曲线与曲线,(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系.
(1)写出曲线,的极坐标方程;
(2)在极坐标系中,已知与,的公共点分别为,,,当时,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】用“算筹”表示数是我国古代计数方法之一,计数形式有纵式和横式两种,如图1所示.金元时期的数学家李冶在《测圆海镜》中记载:用“天元术”列方程,就是用算筹来表示方程中各项的系数.所谓“天元术”,即是一种用数学符号列方程的方法,“立天元一为某某”,意即“设为某某”.如图2所示的天元式表示方程,其中,,…,,表示方程各项的系数,均为筹算数码,在常数项旁边记一“太”字或在一次项旁边记一“元”字,“太”或“元”向上每层减少一次幂,向下每层增加一次幂.
试根据上述数学史料,判断图3天元式表示的方程是( )
A.B.
C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com