精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)讨论的单调区间;

(2)当时,证明: .

【答案】(1)详见解析;(2)详见解析.

【解析】试题分析:(1)求函数的单调区间,先求导,于导数可知导数的符号受参数的取值的影响,根据 ,分析即可,(2)要证,问题转化为,然后构造函数,只需证明是增函数即可

试题解析:

解:(1)的定义域为,且

①当时, ,此时的单调递减区间为.

②当时,由,得

,得.

此时的单调减区间为,单调增区间为.

③当时,由,得

,得.

此时的单调减区间为,单调增区间为.

(2)当时,要证:

只要证: ,即证: .(*)

,则

由(1)知上单调递增,

所以当时, ,于是,所以上单调递增,

所以当时,(*)式成立,

故当时, .

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,设椭圆 的离心率为 分别为椭圆的左、右顶点, 为右焦点,直线的交点到轴的距离为,过点轴的垂线 上异于点的一点,以为直径作圆.

(1)求的方程;

(2)若直线的另一个交点为,证明:直线与圆相切.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市公租房的房源位于A、B、C三个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的,求该市的任4位申请人中:
(1)恰有2人申请A片区房源的概率;
(2)申请的房源所在片区的个数的ξ分布列与期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱柱中, 底面,四边形是边长为的菱形, 分别是的中点,

(Ⅰ)求证: 平面

(Ⅱ)求二面角的余弦值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有下列命题:
①幂函数f(x)= 的单调递减区间是(﹣∞,0)∪(0,+∞);
②若函数f(x+2016)=x2﹣2x﹣1(x∈R),则函数f(x)的最小值为﹣2;
③若函数f(x)=loga|x|(a>0,a≠1)在(0,+∞)上单调递增,则f(﹣2)<f(a+1);
④若f(x)= 是(﹣∞,+∞)上的减函数,则a的取值范围是( );
⑤既是奇函数,又是偶函数的函数一定是f(x)=0(x∈R).
其中正确命题的序号有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:对于函数f(x),若在定义域内存在实数x,满足f(﹣x)=﹣f(x),则称f(x)为“局部奇函数”.
(1)已知二次函数f(x)=ax2+2x﹣4a(a∈R),试判断f(x)是否为定义域R上的“局部奇函数”?若是,求出满足f(﹣x)=﹣f(x)的x的值;若不是,请说明理由;
(2)若f(x)=2x+m是定义在区间[﹣1,1]上的“局部奇函数”,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 =1(a>b>0)的焦点是F1、F2 , 且|F1F2|=2,离心率为 . (Ⅰ)求椭圆C的方程;
(Ⅱ)若过椭圆右焦点F2的直线l交椭圆于A,B两点,求|AF2||F2B|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣ax,(a∈R)
(1)若函数f(x)在点区间[e,+∞]处上为增函数,求a的取值范围;
(2)若函数f(x)的图象在点x=e(e为自然对数的底数)处的切线斜率为3,且k∈Z时,不等式 k(x﹣1)<f(x)在x∈(1,+∞)上恒成立,求k的最大值;
(3)n>m≥4时,证明:(mnnm>(nmmn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设命题p:实数x满足 <0,其中a>0,命题q:实数x满足
(1)若a=1,且p∧q为真,求实数x的取值范围;
(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

同步练习册答案