【题目】己知函数f(x)=(x+l)lnx﹣ax+a (a为正实数,且为常数)
(1)若f(x)在(0,+∞)上单调递增,求a的取值范围;
(2)若不等式(x﹣1)f(x)≥0恒成立,求a的取值范围.
【答案】
(1)解:f(x)=(x+l)lnx﹣ax+a,f′(x)=lnx+ +1﹣a,
若f(x)在(0,+∞)上单调递增,
则a≤lnx+ +1在(0,+∞)恒成立,(a>0),
令g(x)=lnx+ +1,(x>0),
g′(x)= ,
令g′(x)>0,解得:x>1,令g′(x)<0,解得:0<x<1,
故g(x)在(0,1)递减,在(1,+∞)递增,
故g(x)min=g(1)=2,
故0<a≤2;
(2)解:若不等式(x﹣1)f(x)≥0恒成立,
即(x﹣1)[(x+1)lnx﹣a]≥0恒成立,
①x≥1时,只需a≤(x+1)lnx恒成立,
令m(x)=(x+1)lnx,(x≥1),
则m′(x)=lnx+ +1,
由(1)得:m′(x)≥2,
故m(x)在[1,+∞)递增,m(x)≥m(1)=0,
故a≤0,而a为正实数,故a≤0不合题意;
②0<x<1时,只需a≥(x+1)lnx,
令n(x)=(x+1)lnx,(0<x<1),
则n′(x)=lnx+ +1,由(1)n′(x)在(0,1)递减,
故n′(x)>n(1)=2,
故n(x)在(0,1)递增,故n(x)<n(1)=0,
故a≥0,而a为正实数,故a>0.
【解析】(1)求出函数f(x)的导数,问题转化为a≤lnx+ +1在(0,+∞)恒成立,(a>0),令g(x)=lnx+ +1,(x>0),根据函数的单调性求出a的范围即可;(2)问题转化为(x﹣1)[(x+1)lnx﹣a]≥0恒成立,通过讨论x的范围,结合函数的单调性求出a的范围即可.
科目:高中数学 来源: 题型:
【题目】已知函数,则
()函数定义域为__________.
()函数导函数为__________.
()对函数单调研究如下
____
()设函数则
函数的最大值为__________.
(5)函数极值点共__________个,(6)其中极小值点有__________个.
(7)若关于的方程恰有三个不相同的实数解,则的取值范围为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆,圆心为,定点, 为圆上一点,线段上一点满足,直线上一点,满足.
(Ⅰ)求点的轨迹的方程;
(Ⅱ)为坐标原点, 是以为直径的圆,直线与相切,并与轨迹交于不同的两点.当且满足时,求面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某山区小学有100名四年级学生,将全体四年级学生随机按00~99编号,并且按编号顺序平均分成10组.现要从中抽取10名学生,各组内抽取的编号按依次增加10进行系统抽样.
(1)若抽出的一个号码为22,则此号码所在的组数是多少?据此写出所有被抽出学生的号码;
(2)分别统计这10名学生的数学成绩,获得成绩数据的茎叶图如图4所示,求该样本的方差;
(3)在(2)的条件下,从这10名学生中随机抽取两名成绩不低于73分的学生,求被抽取到的两名学生的成绩之和不小于154分的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若直线和是异面直线,在平面内,在平面内,是平面与平面的交线,则下列结论正确的是( )
A. 至少与,中的一条相交 B. 与,都不相交
C. 与,都相交 D. 至多与,中的一条相交
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥中, , , ,若该三棱锥的四个顶点均在同一球面上,则该球的体积为( )
A. B. C. D.
【答案】D
【解析】在三棱锥中,因为, , ,所以,则该几何体的外接球即为以为棱长的长方体的外接球,则 ,其体积为 ;故选D.
点睛:在处理几何体的外接球问题,往往将所给几何体与正方体或长方体进行联系,常用补体法补成正方体或长方体进行处理,本题中由数量关系可证得 从而几何体的外接球即为以为棱长的长方体的外接球,也是处理本题的技巧所在.
【题型】单选题
【结束】
21
【题目】已知函数,则的大致图象为( )
A. B.
C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com