精英家教网 > 高中数学 > 题目详情

要制作一个如图的框架(单位:m),要求所围成的总面积为19.5(m2),其中ABCD是一个矩形,EFCD是一个等腰梯形,梯形高h=AB,tan∠FED=,设AB=xm,BC=ym.
 
(1)求y关于x的表达式;
(2)如何设计x、y的长度,才能使所用材料最少?

(1)y=x (2)AB=3m,BC=4m

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数为偶函数.
(1)求的值;
(2)若方程有且只有一个根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)设,证明:在区间内存在唯一的零点;
(2)设,若对任意,有,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,ABCD是正方形空地,边长为30m,电源在点P处,点P到边AD、AB距离分别为9m、3m.某广告公司计划在此空地上竖一块长方形液晶广告屏幕MNEF,MN∶NE=16∶9.线段MN必须过点P,端点M、N分别在边AD、AB上,设AN=x(m),液晶广告屏幕MNEF的面积为S(m2).
 
(1)用x的代数式表示AM;
(2)求S关于x的函数关系式及该函数的定义域;
(3)当x取何值时,液晶广告屏幕MNEF的面积S最小?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=-ax2,a∈R.
(1)当a=2时,求函数f(x)的零点;
(2)当a>0时,求证:函数f(x)在(0,+∞)内有且仅有一个零点;
(3)若函数f(x)有四个不同的零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=|2x-1-1|.
(1)作出函数y=f(x)的图象;
(2)若a<c,且f(a)>f(c),求证:2a+2c<4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

作函数的y= [3(x+1)]图.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=1-2ax-a2x(a>1).
(1)求函数f(x)的值域;
(2)若x∈[-2,1]时,函数f(x)的最小值是-7,求a的值及函数f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如果对任意实数x,y,都有f(x+y)=f(x)·f(y),且f(1)=2,
(1)求f(2),f(3),f(4)的值.
(2)求+++…+++的值.

查看答案和解析>>

同步练习册答案