精英家教网 > 高中数学 > 题目详情

【题目】已知函数fx)=xexax2x

1)若fx)在x=﹣1处取得极值,求a的值及fx)的单调区间;

2)当x1时,fx)>0恒成立,求a的取值范围.

【答案】1)见解析(2ae1

【解析】

1)求出f′(x),得到f′(﹣1)=0,解出即可;(2)当x1时,fx)>0,转化为a,设gx,(x1),则利用导数求出gx)的最小值,即可求得a的取值范围.

1f′(x)=(x+1ex2ax1

fx)在x=﹣1处取得极值,则f′(﹣1)=2a10

解得:a

fx)=xexx2xf′(x)=(x+1exx1=

f′(x)>0,解得:x0x<﹣1

f′(x)<0,解得:﹣1x0

fx)在(﹣∞,﹣1)递增,在(﹣10)递减,在(0+∞)递增;

故单调增区间为(﹣∞,﹣1),(0+∞);减区间为(﹣10

2x1时,fx)=xexax2x0,即a

gx,(x1

g′(x0

gx)在(1+∞)递增,

gx)>g1)=e1

ae1

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某网购平台为了解某市居民在该平台的消费情况,从该市使用其平台且每周平均消费额超过100元的人员中随机抽取了100名,并绘制右图所示频率分布直方图,已知之间三组的人数可构成等差数列.

(1)求的值;

(2)分析人员对100名调查对象的性别进行统计发现,消费金额不低于300元的男性有20人,低于300元的男性有25人,根据统计数据完成下列列联表,并判断是否有的把握认为消费金额与性别有关?

(3)分析人员对抽取对象每周的消费金额与年龄进一步分析,发现他们线性相关,得到回归方程.已知100名使用者的平均年龄为38岁,试判断一名年龄为25岁的年轻人每周的平均消费金额为多少.(同一组数据用该区间的中点值代替)

,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一圆经过点,且它的圆心在直线.

I)求此圆的方程;

II)若点为所求圆上任意一点,且点,求线段的中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知AB两地相距24km.甲车、乙车先后从A地出发匀速驶向B地.甲车从A地到B地需行驶25min;乙车从A地到B地需行驶20min.乙车比甲车晚出发2min

1)分别写出甲、乙两车所行路程关于甲车行驶时间的函数关系式;

2)甲、乙两车何时在途中相遇?相遇时距A地多远?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】n为正整数集合A=对于集合A中的任意元素

M=

n=3 MM的值

n=4BA的子集且满足对于B中的任意元素相同时M是奇数不同时M是偶数.求集合B中元素个数的最大值

给定不小于2nBA的子集且满足对于B中的任意两个不同的元素

M=0.写出一个集合B使其元素个数最多并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某研究机构为了了解各年龄层对高考改革方案的关注程度,随机选取了200名年龄在内的市民进行了调查,并将结果绘制成如图所示的频率分布直方图(分第一~五组区间分别为).

(1)求选取的市民年龄在内的人数;

(2)若从第3,4组用分层抽样的方法选取5名市民进行座谈,再从中选取2人在座谈会中作重点发言,求作重点发言的市民中至少有一人的年龄在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四边形为等腰梯形, , 沿对角线将旋转,使得点至点的位置,此时满足.

(1)判断的形状,并证明;

(2)求二面角的平面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某研究机构为了了解各年龄层对高考改革方案的关注程度,随机选取了200名年龄在内的市民进行了调查,并将结果绘制成如图所示的频率分布直方图(分第一~五组区间分别为).

(1)求选取的市民年龄在内的人数;

(2)若从第3,4组用分层抽样的方法选取5名市民进行座谈,再从中选取2人在座谈会中作重点发言,求作重点发言的市民中至少有一人的年龄在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,CD是以AB为直径的圆上两点,AB=2AD=2AC=BCF AB上一点,且AF=AB,将圆沿直径AB折起,使点C在平面ABD的射影EBD上,已知CE=

1)求证:AD⊥平面BCE

2)求证:AD∥平面CEF

3)求三棱锥A﹣CFD的体积.

查看答案和解析>>

同步练习册答案