精英家教网 > 高中数学 > 题目详情
已知平面,直线满足:,那么
;     ②;    ③;     ④
可由上述条件可推出的结论有      
②④,
解:因为平面,直线满足:
有两个平面同时与第三个平面垂直,并且交线垂直,则说明了,同时利用线面垂直的性质定理可知,可推出的结论有②④,
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)如图,四棱锥P-ABCD是底面边长为1的正方形,PD⊥BC,PD=1,PC=
PD=1,PC=,PD⊥BC。

(Ⅰ)求证:PD⊥面ABCD;
(Ⅱ)求二面角A-PB-D的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在如图所示的几何体中,四边形是等腰梯形,平面.
(Ⅰ)求证:平面
(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥中,的中点,平面,垂足落在线段上,已知
(Ⅰ)证明:
(Ⅱ)在线段上是否存在点M,使得二面角为直二面角?若存在,求
出AM的长;若不存在,请说明理由。(12分)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥中,底面
分别在棱上,且
(Ⅰ)求证:平面
(Ⅱ)当的中点时,求与平面所成的角的大小;

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正四棱柱的底面边长为,点的中点,是平面内的一个动点,且满足的距离相等,则点的轨迹的长度为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

三棱锥PABC中∠ABC=90°,PAPBPC,则下列说法正确的是
A.平面PAC⊥平面ABCB.平面PAB⊥平面PBC
C.PB⊥平面ABCD.BC⊥平面PAB

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对于平面和直线,下列命题中真命题是(   )
A.若,则
B.若
C.若,则
D.若

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知平面四边形的对角线交于点,且.现沿对角线将三角形翻折,使得平面平面.翻折后: (Ⅰ)证明:;(Ⅱ)记分别为的中点.①求二面角大小的余弦值; ②求点到平面的距离

查看答案和解析>>

同步练习册答案