精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)若函数在定义域上为单调递增函数,求实数的取值范围;

2)设函数,若存在使成立,求实数的取值范围.

【答案】1;(2.

【解析】

1)求出函数的解析式,由题意得出对任意的,利用参变量分离法得出恒成立,然后利用基本不等式求出函数的最大值,可得出实数的取值范围;

2)构造函数,由题意得出,利用导数求出函数在区间上的最大值,然后解不等式即可得出实数的取值范围.

1)因为

所以,所以

据题意,得成立,

所以只需成立,

所以只需恒成立,

又当时,,所以

即所求实数的取值范围是

2)据题意,存在使成立,

引入,则

又因为,所以恒成立,

所以函数上是增函数,所以当时,

所以,所以,所以的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下面使用类比推理,得到的结论正确的是( )

A. 直线,若,则.类比推出:向量,若,则.

B. 三角形的面积为,其中为三角形的边长,为三角形内切圆的半径,类比推出,可得出四面体的体积为,(分别为四面体的四个面的面积,为四面体内切球的半径)

C. 同一平面内,直线,若,则.类比推出:空间中,直线,若,则.

D. 实数,若方程有实数根,则.类比推出:复数,若方程有实数根,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年上海国际青少年足球邀请赛将在6月下旬举行.一体育机构对某高中一年级750名男生,600名女生采用分层抽样的方法抽取45名学生对足球进行兴趣调查,统计数据如下所示:

1:男生

结果

有兴趣

无所谓

无兴趣

人数

2

3

2:女生

结果

有兴趣

无所谓

无兴趣

人数

12

2

(1)的值;

(2)运用独立性检验的思想方法分析:请你填写列联表,并判断是否在犯错误的概率不超过的前提下认为非“有兴趣”与性别有关系?

男生

女生

总计

有兴趣

非有兴趣

总计

(3)45人所有无兴趣的学生中随机选取2人,求所选2人中至少有一个女生的概率.

附:.

0.10

0.05

0.01

2.706

3.841

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数是函数的导函数,已知,且,则使得成立的的取值范围是

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的导函数.

(1)求函数的单调区间;

(2)若函数上存在最大值0,求函数上的最大值;

(3)求证:当时,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,侧棱垂直于底面,的中点,过的平面与交于点

(1)求证:点的中点;

(2)四边形是什么平面图形?说明理由,并求其面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的长轴长为6,且椭圆与圆 的公共弦长为.

(1)求椭圆的方程.

(2)过点作斜率为的直线与椭圆交于两点 ,试判断在轴上是否存在点,使得为以为底边的等腰三角形.若存在,求出点的横坐标的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线的参数方程为为参数,),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)若极坐标为的点在曲线C1上,求曲线C1与曲线C2的交点坐标;

(2)若点的坐标为,且曲线C1与曲线C2交于两点,求|PB||PD|

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1时,求上的单调区间;

2 均恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案