精英家教网 > 高中数学 > 题目详情

函数y=数学公式+1(x≥1)的反函数是


  1. A.
    y=x2-2x+2(x<1)
  2. B.
    y=x2-2x+2(x≥1)
  3. C.
    y=x2-2x(x<1)
  4. D.
    y=x2-2x(x≥1)
B
分析:求反函数,第一步从原函数式中反解出x,第二步互换x,y,最后确定反函数的定义域.
解答:∵y=+1(x≥1)
?y≥1,
反解x?x=(y-1)2+1?x=y2-2y+2(y≥1),
x、y互换,得
?y=x2-2x+2(x≥1).
故选B.
点评:本题主要考查了反函数的求法,求解时,一定要注意反函数的定义的确定,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•黄埔区一模)对于函数y=f(x)与常数a,b,若f(2x)=af(x)+b恒成立,则称(a,b)为函数f(x)的一个“P数对”;若f(2x)≥af(x)+b恒成立,则称(a,b)为函数f(x)的一个“类P数对”.设函数f(x)的定义域为R+,且f(1)=3.
(1)若(1,1)是f(x)的一个“P数对”,求f(2n)(n∈N*);
(2)若(-2,0)是f(x)的一个“P数对”,且当x∈[1,2)时f(x)=k-|2x-3|,求f(x)在区间[1,2n)(n∈N*)上的最大值与最小值;
(3)若f(x)是增函数,且(2,-2)是f(x)的一个“类P数对”,试比较下列各组中两个式子的大小,并说明理由.
①f(2-n)与2-n+2(n∈N*);
②f(x)与2x+2(x∈(0,1]).

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=f(x)的定义域R上的奇函数,满足f(x-2)=-f(x),对一切x∈R都成立,又知当-1≤x≤1时,f(x)=x3,则下列四个命题
①f(x)是以4为周期的周期函数;
②f(x)在[1,3]上的解析式f(x)=(2-x)3
f(x)在点(
3
2
,f(
3
2
))
处的切线方程为3x+4y-5=0;
④x=±1是函数f(x)图象的对称轴.
其中正确的是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•黄埔区一模)对于函数y=f(x)与常数a,b,若f(2x)=af(x)+b恒成立,则称(a,b)为函数f(x)的一个“P数对”.设函数f(x)的定义域为R+,且f(1)=3.
(1)若(1,1)是f(x)的一个“P数对”,求f(210);
(2)若(-2,0)是f(x)的一个“P数对”,且当x∈[1,2)时f(x)=k(2-x),求f(x)在区间[1,22n)(n∈N*)上的最大值与最小值;
(3)若f(x)是增函数,且(2,-2)是f(x)的一个“P数对”,试比较下列各组中两个式子的大小,并说明理由. ①f(2-n)与2-n+2(n∈N*);②f(x)与2x+2(x∈(2-n,21-n],n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•顺义区二模)对于定义域分别为M,N的函数y=f(x),y=g(x),规定:
函数h(x)=
f(x)•g(x),当x∈M且x∈N
f(x),当x∈M且x∉N
g(x),当x∉M且x∈N

(1)若函数f(x)=
1
x+1
,g(x)=x2+2x+2,x∈R
,求函数h(x)的取值集合;
(2)若f(x)=1,g(x)=x2+2x+2,设bn为曲线y=h(x)在点(an,h(an))处切线的斜率;而{an}是等差数列,公差为1(n∈N*),点P1为直线l:2x-y+2=0与x轴的交点,点Pn的坐标为(an,bn).求证:
1
|P1P2|2
+
1
|P1P3|2
+…+
1
|P1Pn|2
2
5

(3)若g(x)=f(x+α),其中α是常数,且α∈[0,2π],请问,是否存在一个定义域为R的函数y=f(x)及一个α的值,使得h(x)=cosx,若存在请写出一个f(x)的解析式及一个α的值,若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
1-x2
(-1≤x≤0)
的反函数是(  )

查看答案和解析>>

同步练习册答案