精英家教网 > 高中数学 > 题目详情
17.295是等差数列-5,-2,1,…的第(  )项.
A.99B.100C.101D.102

分析 写出等差数列的通项公式,然后求解项数.

解答 解:等差数列-5,-2,1,…的通项公式为:an=-5+(n-1)×3=3n-8.
295是等差数列-5,-2,1,…的第n项,可得295=3n-8,
解得n=101.
故选:C.

点评 本题考查等差数列通项公式的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.设0<x<π,则函数y=$\frac{2-cosx}{sinx}$的最小值为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=m(x-$\frac{1}{x}$)-2lnx(m∈R),g(x)=-$\frac{m}{x}$,若至少存在一个x0∈[1,e],使得f(x0)<g(x0)成立,则实数m的范围是(  )
A.(-∞,$\frac{2}{e}$]B.(-∞,$\frac{2}{e}$)C.(-∞,0]D.(-∞,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设计一个算法,判断一个正的n(n>2)位数是不是回文数,用自然语言描述算法的步骤.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.(1)已知x<$\frac{5}{4}$,求f(x)=4x-2+$\frac{1}{4x-5}$的最大值;
(2)已知x为正实数且x2+$\frac{{y}^{2}}{2}$=1,求x$\sqrt{1+{y}^{2}}$的最大值;
(3)求函数y=$\frac{\sqrt{x-1}}{x+3+\sqrt{x-1}}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=lnx-2ax3(a>0),若|f(x)|≥$\frac{1}{2}$对于任意的x∈(0,1]恒成立,则实数a的取值范围为(  )
A.[$\frac{\sqrt{e}}{6}$,+∞)B.[$\frac{1}{6}$,$\frac{\sqrt{e}}{6}$]C.[$\frac{1}{6}$,+∞)D.[$\frac{1}{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设A、B、C是三角形的三内角,且lgsinA=0,又sinB、sinC是关于x的方程4x2-2($\sqrt{3}$+1)x+k=0的两个根,求实数x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=$\left\{\begin{array}{l}{{e}^{x}(x≥0)}\\{x+1(x<0)}\end{array}\right.$,则不等式f(x2)<f(2-x)的解集为(-2,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设数列{an}的前n项和为Sn,且a1=1,an+1=1+Sn(n∈N*).
(1)求数列{an}的通项公式;
(2)求数列{$\frac{n}{{a}_{n}}$}的前n项和Rn

查看答案和解析>>

同步练习册答案