精英家教网 > 高中数学 > 题目详情

【题目】某班AB两名学生六次数学测验成绩(百分制)如图所示:

A同学成绩的中位数大于B同学成绩的中位数;

A同学的平均分比B同学高;

A同学的平均分比B同学低;

A同学成绩方差小于B同学的方差,

以上说法中正确的是(

A.③④B.①②④C.②④D.①③④

【答案】A

【解析】

分别求出AB两名学生的中位数、平均数、方差,对①②③④各说法进行判断可得答案.

解:根据茎叶图可得:

A同学成绩的中位数为:B同学成绩的中位数为:

A同学成绩的中位数小于B同学成绩的中位数,①不正确;

②③A同学的平均分为:

B同学的平均分为:

A同学的平均分比B同学低,故②不正确,③正确;

A同学成绩数据比较集中,方差小,B同学成绩数据比较分散,方差大,故④正确;

故选:A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图是某学校研究性课题《什么样的活动最能促进同学们进行垃圾分类》向题的统计图(每个受访者都只能在问卷的5个活动中选择一个),以下结论错误的是(  )

A. 回答该问卷的总人数不可能是100

B. 回答该问卷的受访者中,选择“设置分类明确的垃圾桶”的人数最多

C. 回答该问卷的受访者中,选择“学校团委会宣传”的人数最少

D. 回答该问卷的受访者中,选择“公益广告”的人数比选择“学校要求”的少8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知椭圆的离心率为,右焦点F到右准线的距离为3

1)求椭圆C的标准方程;

2)设过F的直线l与椭圆C相交于PQ两点.已知l被圆Ox2+y2a2截得的弦长为,求OPQ的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为,(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)求曲线的直角坐标方程,并说明它是何种曲线;

2)设点的坐标为,直线交曲线两点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,底面ABCD是边长为2的菱形,∠ABC60°为正三角形且侧面PAB底面ABCD 为线段的中点, 在线段.

I是线段的中点时求证:PB // 平面ACM

II求证:

III)是否存在点,使二面角的大小为60°,若存在,求出的值;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆A:(x+22+y232,过B20)且与圆A相切的动圆圆心为P

1)求点P的轨迹E的方程;

2)设过点A的直线l1交曲线EQS两点,过点B的直线l2交曲线ERT两点,且l1l2,垂足为WQSRT为不同的四个点),求四边形QRST的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,求的极值;

(2)若有两个不同的极值点 ,求的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆上任意一点,的垂直平分线交于点,记点的轨迹为曲线.

1)求曲线的方程;

2)已知点,过的直线两点,证明:直线的斜率与直线的斜率之和为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,其中左焦点(-2,0).

1) 求椭圆C的方程;

2) 若直线y=x+m与椭圆C交于不同的两点AB,且线段AB的中点M在圆x2+y2=1上,求m的值.

查看答案和解析>>

同步练习册答案