精英家教网 > 高中数学 > 题目详情

已知,点B是轴上的动点,过B作AB的垂线轴于点Q,若
,.

(1)求点P的轨迹方程;
(2)是否存在定直线,以PM为直径的圆与直线的相交弦长为定值,若存在,求出定直线方程;若不存在,请说明理由。

(1)y2=x
(2)存在定直线x=,以PM为直径的圆与直线x=的相交弦长为定值

解析试题分析:解: (1)设B(0,t),设Q(m,0),t2=|m|,m0,m=-4t2
 Q(-4t2,0),设P(x,y),则=(x-,y),=(-4t2-,0),
2=(-,2 t), +=2
(x-,y)+ (-4t2-,0)= (-,2 t),
 x=4t2,y="2" t, y2=x,此即点P的轨迹方程;       6分。
(2)由(1),点P的轨迹方程是y2=x;设P(y2,y),M (4,0) ,则以PM为直径的圆的    圆心即PM的中点T(), 以PM为直径的圆与直线x=a的相交弦长:
L=2
=2=2      10分
若a为常数,则对于任意实数y,L为定值的条件是a-="0," 即a=时,L=
存在定直线x=,以PM为直径的圆与直线x=的相交弦长为定值。 3分
考点:抛物线定义,以及直线与圆
点评:解决的关键是能利用向量的关系式化简得到坐标关系,同时能利用直线与圆的位置关系来求解定值,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆的长轴长为,焦点是,点到直线的距离为,过点且倾斜角为锐角的直线与椭圆交于A、B两点,使得|=3|.
(1)求椭圆的标准方程;         
(2)求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

,在平面直角坐标系中,已知向量,向量,,动点的轨迹为E.
(1)求轨迹E的方程,并说明该方程所表示曲线的形状;
(2)已知,证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B,且(O为坐标原点),并求出该圆的方程;
(3)已知,设直线与圆C:(1<R<2)相切于A1,且与轨迹E只有一个公共点B1,当R为何值时,|A1B1|取得最大值?并求最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为椭圆的左、右焦点,是椭圆上一点,若
(1)求椭圆方程;
(2)若的面积。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知曲线  在点  处的切线  平行直线,且点在第三象限.
(1)求的坐标;
(2)若直线  , 且  也过切点 ,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直角坐标系xOy中,椭圆C1: ="1" (a>b>0)的左、右焦点分别为F1、F2, F2也是抛物线C2:y2=4x的焦点,点M为C1与C2在第一象限的交点,且|MF2|=.
(1)求C1的方程;
(2)直线l∥OM,与C1交于A、B两点,若·=0,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,且过点.
(1)求该椭圆的标准方程;
(2)设点,若是椭圆上的动点,求线段的中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求由抛物线与它在点和点的切线所围成的区域的面积。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知椭圆的离心率为,右焦点为(,0),斜率为1的直线与椭圆G交与A、B两点,以AB为底边作等腰三角形,顶点为
(1)求椭圆G的方程;
(2)求的面积.

查看答案和解析>>

同步练习册答案