精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=lg(2+x)+lg(2-x),
(Ⅰ)求函数f(x)的定义域及值域;
(Ⅱ)判断函数f(x)的奇偶性,并说明理由.

分析 (Ⅰ)根据真数为正,列出不等式组求得定义域,再根据真数的范围得出函数的值域;
(Ⅱ)利用奇偶性的定义判断函数的奇偶性;

解答 解:(Ⅰ)∵f(x)=1g(2+x)+lg(2-x)
∴$\left\{\begin{array}{l}{2+x>0}\\{2-x>0}\end{array}\right.$,解得x∈(-2,2),
函数的定义域为(-2,2);
f(x)=lg(4-x2)≤lg4,
所以,函数f(x)的值域为(-∞,lg4];
(Ⅱ)f(x)为偶函数,判断过程如下:
由(1)知,函数f(x)的定义域关于原点对称,
且f(-x)=lg(2-x)+lg(2+x)=f(x),
所以,f(x)为偶函数.

点评 本题主要考查了对数函数的图象和性质,函数定义域,值域的求解,以及奇偶性的判断,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.解方程
(1)${9}^{{x}^{2}-3x}$=$\frac{1}{81}$
(2)log4(3-x)=log4(2x+1)+log4(3+x)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\vec a•\vec b+\frac{1}{2}$,其中$\vec a=(\sqrt{3}sinx-cosx,-1)$,$\vec b=(cosx,1)$.
(1)求函数f(x)的最小正周期及单调区间;
(2)设△ABC的内角A、B、C所对的边分别为a、b、c,且c=3,f(C)=0,若sin(A+C)=2sinA,求a、b值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.命题“?x<0,x2-x+1>0”的否定是?x<0,x2-x+1≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设全集U=R,集合A={x|y=$ln\frac{1+x}{1-x}$},B={y|y=3-x},则A∩(∁UB)=(  )
A.[-1,0]B.(-1,0)C.(-1,0]D.[-1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.定义在R上的函数f(x),且f(x),f(x+1)都是偶函数,当x∈[-1,0)时$f(x)={({\frac{1}{2}})^x}$,则f(log28)等于(  )
A.3B.$\frac{1}{8}$C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设△ABC的内角A、B、C所对的边长分别为a、b、c,且(3b-c)cosA=acosC.
(1)求cosA的值;
(2)若△ABC的面积S=2$\sqrt{2}$,求△ABC的周长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知公差不为零的等差数列{an}的前3项和S3=9,且a1、a2、a5成等比数列.求数列{an}的通项公式及前n项的和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上的点到左焦点的最大距离为$\sqrt{3}$+$\sqrt{2}$,且点M(1,e)在椭圆C上,其中e为椭圆C的离心率.
(1)求椭圆C的方程;
(2)如图所示,A、B是椭圆C上的两点,且|AB|=$\sqrt{3}$,求△AOB的面积的取值范围.

查看答案和解析>>

同步练习册答案