精英家教网 > 高中数学 > 题目详情

【题目】如图,底面是边长为3的正方形,平面与平面所成的角为.

(1)求证:平面平面

(2)求二面角的余弦值.

【答案】(1)见解析;(2).

【解析】试题分析: (1)平面平面,,又证出线面垂直平面,再根据面面垂直的判定定理证出结论;(2) 以为坐标原点,所在直线分别为轴建立如图空间直角坐标系,根据线面角大小求出侧棱长,写出各点坐标,进而求出平面和平面的法向量,由二面角公式代入求值即可.

试题解析:(1)平面平面.

.又底面是正方形,

平面,又平面,平面平面

(2)以为坐标原点,所在直线分别为轴建立如图空间直角坐标系

与平面所成的角为

,. 设平面的一个法向量为,则.又平面为平面的一个法向量. 二面角为锐角,二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

在平面直角坐标系中,已知直线 为参数),以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求曲线的直角坐标方程;

(2)设点的极坐标为,直线与曲线的交点为 ,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四面体S﹣ABC中,SA⊥平面ABC,∠BAC=120°,SA=AC=2,AB=1,则该四面体的外接球的表面积为

A. 11π B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学为研究学生的身体素质与课外体育锻炼时间的关系,对该校200名高三学生平均每天课外体育锻炼时间进行调查,如表:(平均每天锻炼的时间单位:分钟)

将学生日均课外体育锻炼时间在的学生评价为“课外体育达标”.

(1)请根据上述表格中的统计数据填写下面的列联表;

课外体育不达标

课外体育达标

合计

20

110

合计

(2)通过计算判断是否能在犯错误的概率不超过0.01的前提下认为“课外体育达标”与性别有关?

参考格式:,其中

0.025

0.15

0.10

0.005

0.025

0.010

0.005

0.001

5.024

2.072

6.635

7.879

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经过中央电视台《魅力中国城》栏目的三轮角逐,黔东南州以三轮竞演总分排名第一名问鼎“最具人气魅力城市”.如图统计了黔东南州从2010年到2017年的旅游总人数(万人次)的变化情况,从一个侧面展示了大美黔东南的魅力所在.根据这个图表,在下列给出的黔东南州从2010年到2017年的旅游总人数的四个判断中,错误的是( )

A. 旅游总人数逐年增加

B. 2017年旅游总人数超过2015、2016两年的旅游总人数的和

C. 年份数与旅游总人数成正相关

D. 从2014年起旅游总人数增长加快

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若处取得极值.

①求的值;

②若存在,使得不等式成立,求的最小值;

(2)当时,若上是单调函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[2018·石家庄一检]已知函数

(1)若,求函数的图像在点处的切线方程;

(2)若函数有两个极值点,且,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为矩形,平面平面的中点,上一点,于点.

(1)证明:平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设椭圆 ,长轴的右端点与抛物线 的焦点重合,且椭圆的离心率是

(Ⅰ)求椭圆的标准方程;

(Ⅱ)过作直线交抛物线 两点,过且与直线垂直的直线交椭圆于另一点,求面积的最小值,以及取到最小值时直线的方程.

查看答案和解析>>

同步练习册答案