精英家教网 > 高中数学 > 题目详情
已知函数f(x)=kx2+lnx,若f(x)<0在函数定义域内恒成立,求k的取值范围.
考点:函数恒成立问题
专题:函数的性质及应用,导数的综合应用,不等式的解法及应用
分析:求出原函数的导函数,利用导数求得函数的最大值,由最大值小于0求得k的范围.
解答: 解:由f(x)=kx2+lnx(x>0),得f(x)=2kx+
1
x
=
2kx2+1
x

当k≥0时,f′(x)>0,函数f(x)在(0,+∞)上为增函数,
又当x→+∞时,f(x)→+∞.不满足f(x)<0在函数定义域内恒成立;
当k<0时,由f′(x)=0,解得x=±
-
1
2k

当x∈(0,
-
1
2k
)时,f′(x)>0,当x∈(
-
1
2k
,+∞
)时,f′(x)<0.
∴f(x)在(0,
-
1
2k
)上为增函数,在(
-
1
2k
,+∞
)上为减函数,
f(x)max=f(
-
1
2k
)
=k•(
-
1
2k
)2+ln
-
1
2k
=-
1
2
+ln
-
1
2k

-
1
2
+ln
-
1
2k
<0
,得ln
-
1
2k
1
2
,即k<-
1
2e

∴k的取值范围是(-∞,-
1
2e
).
点评:本题考查了恒成立问题,考查了利用导数求函数的最值,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一个圆锥形容器和一个圆柱形容器的轴截面的尺寸如图,两容器盛有液体的体积正好相等,且液面高均为h,求h.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)定义在正整数集上,且满足f(1)=2008和f(1)+f(2)+…+f(n)=n2f(n),则f(2008)的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=(2a-1)x+b在R上是减函数,则a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:△ABC中,∠A=30°,D为边BC上一点,
AB
2=
AD
2+
BD
DC
,求∠B.

查看答案和解析>>

科目:高中数学 来源: 题型:

由无理数引发的数学危机一直延续到19世纪.直到1872年,德国数学家戴德金从连续性的要求出发,用有理数的“分割”来定义无理数(史称戴德金分割),并把实数理论建立在严格的科学基础上,才结束了无理数被认为“无理”的时代,也结束了持续2000多年的数学史上的第一次大危机.所谓戴德金分割,是指将有理数集Q划分为两个非空的子集M与N,且满足M∪N=Q,M∩N=∅,M中的每一个元素都小于N中的每一个元素,则称(M,N)为戴德金分割试判断,对于任一戴德金分割(M,N),下列选项中,不可能成 立的是(  )
A、M没有最大元素,N有一个最小元素
B、M没有最大元素,N也没有最小元素
C、M有一个最大元素,N有一个最小元素
D、M有一个最大元素,N没有最小元素

查看答案和解析>>

科目:高中数学 来源: 题型:

已知非空数集A、B、C,若A={y|y=x2,x∈B},B={y|y=
x
,x∈C},C={y|y=x3,x∈A},则(  )
A、A=B=C
B、A=B≠C
C、A=C≠B
D、B=C≠A

查看答案和解析>>

科目:高中数学 来源: 题型:

某同学设计如图所示的程序框图用以计算和式12+22+32+…+202的值,则在判断框中应填写(  )
A、i≤9B、i≥9
C、i≤20D、i≥11

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的通项公式为an=-2n+5.证明:{an}是等差数列.

查看答案和解析>>

同步练习册答案