精英家教网 > 高中数学 > 题目详情
(2013•枣庄二模)如图所示是一几何体的三视图,则该几何体外接球的表面积为(  )
分析:由三视图可知:该几何体是一个三棱锥,高为1,底面是腰长为2的等腰直角三角形.如图所示,建立空间直角坐标系.取线段AB的中点,则DA=DB=DC.设球心为O,则OD⊥平面ABC.
又|OP|=|OB|=R,利用两点间的距离公式即可得出.
解答:解:由三视图可知:该几何体是一个三棱锥,高为1,底面是腰长为2的等腰直角三角形.
如图所示,建立空间直角坐标系.取线段AB的中点,则DA=DB=DC.设球心为O,则OD⊥平面ABC.
∵D(1,1,0),∴可设球心O(1,1,z),又B(0,2,0),P(0,0,1).
∵|OB|=|OP|=R(球的半径).
1+1+z2
=
1+1+(z-1)2
,解得z=
1
2

∴R=
1+1+(
1
2
)2
=
3
2

∴该几何体外接球的表面积S=4π×(
3
2
)2
=9π.
故选D.
点评:由三视图正确恢复原几何体即掌握球的性质、两点间的距离公式是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•枣庄二模)已知函数f(x)=x2-
ln|x|
x
,则函数y=f(x)的大致图象为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•枣庄二模)若双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的一个焦点到一条渐近线的距离等于焦距的
1
4
,则此双曲线的渐近线方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•枣庄二模)如图所示,墙上挂有边长为2的正方形木板,它的四个角的空白部分都是以正方形的顶点为圆心,半径为1的圆孤,某人向此板投镖,假设每次都能击中木板,且击中木板上每个点的可能性都一样,则它击中阴影部分的概率是
1-
π
4
1-
π
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•枣庄二模)集合A={(x,y)|y=x,x∈R},B={(x,y)|x2+y2=1,x,y∈R},则集合A∩B中元素的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•枣庄二模)已知i是虚数单位,若纯虚数z满足(2-i)z=4+2ai,则实数a的值为(  )

查看答案和解析>>

同步练习册答案