精英家教网 > 高中数学 > 题目详情

【题目】已知函数 的图像上存在关于轴对称的点,则的取值范围是________

【答案】(0,

【解析】

由题意可得,存在x<0使fx)﹣g(﹣x)=0,即ln(﹣x+a)=0在(﹣∞,0)上有解,从而化为函数mx)=ln(﹣x+a)在(﹣∞,0)上有零点,从而求解.

若函数fx)=x<0)与gx)=x2+lnx+a图象上存在关于y轴对称的点,则等价为fx)=g(﹣x),在x<0时,方程有解,

x2+ln(﹣x+a),

ln(﹣x+a)=0在(﹣∞,0)上有解,

mx)=ln(﹣x+a),

mx)=ln(﹣x+a)在其定义域上是增函数,

x→﹣∞时,mx)<0,

a>0,则2x+2ln(﹣x+a)=0在(﹣∞,0)上有解可化为

ln a>0,

lna

故0<a

综上所述,a∈(0,).

故答案为:(0,).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左右焦点分别为 ,左顶点为,上顶点为 的面积为.

(1)求椭圆的方程;

(2)设直线 与椭圆相交于不同的两点 是线段的中点.若经过点的直线与直线垂直于点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,( .

(1)若 ,求函数的单调减区间;

(2)若时,不等式上恒成立,求实数的取值范围;

(3)当 时,记函数的导函数的两个零点是),求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx+ax在点(t,f(t))处切线方程为y=2x﹣1
(1)求a的值
(2)若 ,证明:当x>1时,
(3)对于在(0,1)中的任意一个常数b,是否存在正数x0 , 使得:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A、B、C是单位圆上三个互不相同的点.若 ,则 的最小值是(
A.0
B.-
C.-
D.-

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业需要建造一个容积为8立方米,深度为2米的无盖长方体水池,已知池壁的造价为每平方米100元,池底造价为每平方米300元,设水池底面一边长为米,水池总造价为元,求关于的函数关系式,并求出水池的最低造价.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分14分)用这六个数字,可以组成多少个分别符合下

列条件的无重复数字的四位数:(1)奇数;(2)偶数;(3)大于的数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数 的图象向右平移 个单位,再把所有点的横坐标缩短到原来的 倍(纵坐标不变),得函数y=g(x)的图象,则g(x)图象的一个对称中心为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知顶点为原点O的抛物线C1的焦点F与椭圆C2 =1(a>b>0)的右焦点重合,C1与C2在第一和第四象限的交点分别为A、B.
(1)若△AOB是边长为2 的正三角形,求抛物线C1的方程;
(2)若AF⊥OF,求椭圆C2的离心率e;
(3)点P为椭圆C2上的任一点,若直线AP、BP分别与x轴交于点M(m,0)和N(n,0),证明:mn=a2

查看答案和解析>>

同步练习册答案