精英家教网 > 高中数学 > 题目详情

如图,在△ABC中,∠ABC=90°,∠A=30。,斜边AC上的中线BD=2,现沿BD将△BCD折起成三棱锥C-ABD,已知G是线段BD的中点,E,F分别是CG,AG的中点.

(1)求证:EF//平面ABC;
(2)三棱锥C—ABD中,若棱AC=,求三棱锥A一BCD的体积.

(1)证明过程详见解析;(2).

解析试题分析:本题主要以平面图形的翻折为几何背景,考查三棱锥中的线线平行、线面平行、线面垂直以及三棱锥的体积等数学知识,考查学生的空间想象能力和逻辑推理能力.第一问,由题意得EF//AC,利用线面平行的判定得线面平行;第二问,在中,利用余弦定理可以求出AG的边长,在中,利用三个边长的关系,可判断出,所以利用线面垂直的判定可以得到平面ABD,所以CG是锥体的高,利用等体积法将转化为,从而求出锥体的体积.
试题解析:(1) 证明:⑴ EF是的中位线EF//AC   3分
又AC平面ABC    EF平面ABC
EF//平面ABC        6分
⑵在中,,由余弦定理得:
,   8分
 
即CGAG,又CGBD 平面ABD   10分
     12分
考点:1.线面平行的判定;2.线面垂直的判定;3.余弦定理;4.等体积法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,四棱锥P-ABCD中,底面ABCD为正方形,DA⊥面ABP,AB=1,PA=2,∠PAB=60°.
(1)求证:平面PBC⊥面PDC
(2)设E为PC上一点,若二面角B-EA-P的余弦值为-,求三棱锥E-PAB的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,△中,,在三角形内挖去一个半圆(圆心在边上,半圆与分别相切于点,与交于点),将△绕直线旋转一周得到一个旋转体.

(1)求该几何体中间一个空心球的表面积的大小;
(2)求图中阴影部分绕直线旋转一周所得旋转体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆锥母线长为6,底面圆半径长为4,点是母线的中点,是底面圆的直径,半径与母线所成的角的大小等于

(1)求圆锥的侧面积和体积.
(2)求异面直线所成的角;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面为直角梯形,且,平面底面的中点,是棱的中点,.

(1)求证:平面
(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆台的上、下底面半径分别是2、6,且侧面面积等于两底面面积之和。
(1)求该圆台的母线长;(2)求该圆台的体积。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直三棱柱ABCA′B′C′,∠BAC=90°,AB=AC=,AA′=1,点M,N分别为
A′B和B′C′的中点.

(1)证明:MN∥平面A′ACC′;
(2)求三棱锥A′MNC的体积.(锥体体积公式V=Sh,其中S为底面面积,h为高)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,四边形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=4,AB=2,点E、F分别在BC、AD上,EF∥AB.现将四边形ABEF沿EF折起,使平面ABEF⊥平面EFDC,设AD中点为P.

(1)当E为BC中点时,求证:CP∥平面ABEF;
(2)设BE=x,问当x为何值时,三棱锥ACDF的体积有最大值?并求出这个最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,菱形的边长为2,为正三角形,现将沿向上折起,折起后的点记为,且,连接

(1)若的中点,证明:平面
(2)求三棱锥的体积.

查看答案和解析>>

同步练习册答案