精英家教网 > 高中数学 > 题目详情
8.如图,在三棱锥P-ABC中,PA⊥平面ABC,AB⊥AC,PA=1,AB=AC=$\sqrt{2}$,D为BC的中点,过点D作DQ∥AP,且DQ=1,连结QB,QC,QP.
(1)证明:AQ⊥平面PBC;
(2)求二面角B-AQ-C的平面角的余弦值.

分析 (1)连结AD,PD,PD∩AQ=O,推导出四边形PADQ为正方形,从而AQ⊥DP,由线面垂直得PA⊥BC,由等腰三角形性质得AD⊥BC,从而AQ⊥BC,由此能证明AQ⊥平面PBC.
(2)由AQ⊥平面PBC,连结OB,OC,则∠BOC为二面角B-AQ-C的平面角,由此能求出二面角B-AQ-C的平面角的余弦值.

解答 证明:(1)如图,连结AD,PD,PD∩AQ=O,
∵AB⊥AC,AB=AC=$\sqrt{2}$,D为BC中点,∴AD=1,
∵PA⊥平面ABC,AD?平面ABC,∴PA⊥AD,
∵PA⊥平面ABC,AD?平面ABC,∴PA⊥AD,
∵PA=AD=1,∴四边形PADQ为正方形,∴AQ⊥DP,
∵PA⊥平面ABC,BC?平面ABC,∴PA⊥BC,
∵D为线段BC的中点,AB=AC,∴AD⊥BC,
又AD∩PA=A,∴BC⊥平面APQD,
∵AQ?平面APQD,∴AQ⊥BC,
∵DP∩BC=D,∴AQ⊥平面PBC.
解:(2)由(1)知AQ⊥平面PBC,连结OB,OC,
则∠BOC为二面角B-AQ-C的平面角,
由题意知PA=BD=1,OD=$\frac{\sqrt{2}}{2}$,
∴OB=OC=$\sqrt{O{D}^{2}+B{D}^{2}}=\sqrt{\frac{1}{2}+1}$=$\frac{\sqrt{6}}{2}$,
∴cos∠BOC=$\frac{O{B}^{2}+O{C}^{2}-B{C}^{2}}{2•OB•OC}$=$\frac{\frac{6}{4}+\frac{6}{4}-4}{2•\frac{\sqrt{6}}{2}•\frac{\sqrt{6}}{2}}$=-$\frac{1}{3}$,
∴二面角B-AQ-C的平面角的余弦值为-$\frac{1}{3}$.

点评 本题考查线面垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.下列选项中,与其他三个选项所蕴含的数学推理不同的是(  )
A.独脚难行,孤掌难鸣B.前人栽树,后人乘凉
C.物以类聚,人以群分D.飘风不终朝,骤雨不终日

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=lnx与g(x)=a-x($\frac{1}{e}$≤x≤e)的图象上恰好存在唯一一个关于x轴对称的点,则实数a的取值范围为(  )
A.[1,e-1]B.{1}∪($\frac{1}{e}$+1,e-1]C.[1,$\frac{1}{e}$+1]D.($\frac{1}{e}$+1,e-1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,矩形ABCD与矩形ADEF所在的平面互相垂直,将△DEF沿FD翻折,翻折后的点E(记为点P)恰好落在BC上,设AB=1,FA=x(x>1),AD=y,则以下结论正确的是(  )
A.当x=2时,y有最小值$\frac{4\sqrt{3}}{3}$B.当x=2时,有最大值$\frac{4\sqrt{3}}{3}$
C.当x=$\sqrt{2}$时,y有最小值2D.当x=$\sqrt{2}$时,y有最大值2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某公司4个店某月销售额和利润如表:
商店名称ABCD
销售额(x)/千万元2356
利润额(y)/百万元2334
(1)画出销售额关于利润额的散点图.
(20若销售额和利润额具有相关关系,用最小二乘法计算利润额y对销售额x的回归直线方程.$b=\frac{{{x_1}{y_1}+{x_2}{y_2}+…+{x_n}{y_n}-n\overline x\overline y}}{{{x_1}^2+x{{{\;}_2}^2}+…+{x_n}^2-n{{\overline x}^2}}}$,$a=\overline y-b\overline x$(精确到0.1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.某空间几何体的三视图中,有一个是正方形,则该空间几何体不可能是(  )
A.圆柱B.圆锥C.棱锥D.棱柱

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.某几何体的三视图如图所示,则该几何体的表面积是$16+6\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.为了研究某种细菌在特定条件下随时间变化的繁殖情况,得到如表格所示实验数据,若t与y线性相关.
天数t(天)34567
繁殖个数y(千个)568912
(1)求y关于t的回归直线方程;
(2)预测t=8时细菌繁殖的个数.
(回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$中:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n(\overline{x})^{2}}$,$\sum_{i=1}^{n}{t}_{i}{y}_{i}$=217,其中$\sum_{i=1}^n{{t_i}{y_i}}$=217,$\sum_{i=1}^n{{t_i}^2}$=135)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,AA1,BB1为圆柱OO1的母线,BC是底面圆O的直径,D、E分别是AA1、CB1的中点,且AB=AC=$\frac{1}{2}$AA1=2.
( I)求证:DE∥平面ABC;
(Ⅱ)求三棱锥A1-B1DE的体积.

查看答案和解析>>

同步练习册答案