精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的焦距为,椭圆上任意一点到椭圆两个焦点的距离之和为6.

(Ⅰ)求椭圆的方程;

(Ⅱ)设直线 与椭圆交于两点,点(0,1),且=,求直线的方程.

【答案】(1) ;(2) .

【解析】试题分析:(Ⅰ)由椭圆上任意一点到椭圆两个焦点的距离之和为可得,由的焦距为,可得,再由的关系可得,进而得到椭圆方程;(II)直线代入椭圆方程,运用韦达定理和判别式大于,再由中点坐标公式和两直线垂直的条件,可得的方程,解方程可得,从而可得直线方程.

试题解析:(Ⅰ)由已知,解得,

所以

所以椭圆C的方程为

(Ⅱ)由

直线与椭圆有两个不同的交点,所以解得

设A(),B(

计算

所以,A,B中点坐标E(),

因为=,所以PE⊥AB,,

所以, 解得,

经检验,符合题意,所以直线的方程为.

【方法点晴】本题主要考查待定系数求椭圆方程以及直线与椭圆的位置关系,属于难题.用待定系数法求椭圆方程的一般步骤;①作判断:根据条件判断椭圆的焦点在轴上,还是在轴上,还是两个坐标轴都有可能;②设方程:根据上述判断设方程 ;③找关系:根据已知条件,建立关于的方程组;④得方程:解方程组,将解代入所设方程,即为所求.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若恒成立,求实数的最大值

(2)在(1)成立的条件下,正实数满足,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱锥中,平面的中点,是线段上的一点,且.

(1)求证:平面

(2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某企业的某种产品中抽取件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:

(Ⅰ)求这件产品质量指标值的样本平均数和样本方差(同一组数据用该区间的中点值作代表,记作);

(Ⅱ)由频率分布直方图可以认为,这种产品的质量指标值服从正态分布,其中近似为样本平均数近似为样本方差

(i)若使的产品的质量指标值高于企业制定的合格标准,则合格标准的质量指标值大约为多少?

(ii)若该企业又生产了这种产品件,且每件产品相互独立,则这件产品质量指标值不低于的件数最有可能是多少?

附:参考数据与公式:;若,则①;②;③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{}的首项a12,前n项和为,且数列{}是以为公差的等差数列·

1)求数列{}的通项公式;

2)设,数列{}的前n项和为

①求证:数列{}为等比数列,

②若存在整数mn(mn1),使得,其中为常数,且2,求的所有可能值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,点CO上,且AOC120°PA⊥平面ABCAB=4,PA=2DPC的中点,点MO上的动点(不与AC重合).

(1)证明:ADPB

(2)当三棱锥DACM体积最大时,求面MAD与面MCD所成二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线和圆,直线与抛物线和圆分别交于四个点(自下而上的顺序为),则的值为_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某小学对五年级的学生进行体质测试,已知五年一班共有学生30人,测试立定跳远的成绩用茎叶图表示如图(单位:):男生成绩在175以上(包括175)定义为“合格”,成绩在175以下(不包括175)定义为“不合格”.女生成绩在165以上(包括165)定义为“合格”,成绩在165以下(不包括165)定义为“不合格”.

(1)求五年一班的女生立定跳远成绩的中位数;

(2)在五年一班的男生中任意选取3人,求至少有2人的成绩是合格的概率;

(3)若从五年一班成绩“合格”的学生中选取2人参加复试,用表示其中男生的人数,写出的分布列,并求的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于实数,将满足为整数的实数称为实数的小数部分,用记号表示.对于实数,无穷数列满足如下条件:其中

(1)若,求数列

(2)当时,对任意的,都有,求符合要求的实数构成的集合

(3)若是有理数,设是整数,是正整数,互质),问对于大于的任意正整数,是否都有成立,并证明你的结论.

查看答案和解析>>

同步练习册答案