精英家教网 > 高中数学 > 题目详情
设a和b分别是先后抛掷一枚骰子得到的点数,且随机变量ξ表示方程ax2+bx+1=0的实根的个数(相等的两根算一个根).
(1)求方程ax2+bx+1=0无实根的概率;
(2)求随机变量ξ的概率分布列;
(3)求在先后两次出现的点数中有4的条件下,方程ax2+bx+1=0有实根的概率.
分析:(1)由题意知本题是一个古典概型,试验发生包含的所有事件根据分步计数原理知是36,满足条件的事件:方程无实根,则△=b2-4a<0即b2<4a,通过列举法得到所包含的基本事件个数,利用古典概型的概率公式求出值.
(2)由题意知实根的个数只有三种结果,0、1、2,根据上一问的计算可以写出当变量取值时对应的概率,写出分布列.
(3)利用古典概型的概率公式求出事件“先后两次出现的点数中有4”的概率,利用条件概率的概率公式求出方程ax2+bx+1=0有实根的概率.
解答:解:基本事件总数为:6×6=36
(1)若方程无实根,则△=b2-4a<0即b2<4a
若a=1,则b=1,
若a=2,则b=1,2
若a=3,则b=1,2,3
若a=4,则b=1,2,3
若a=5,则b=1,2,3,4
若a=6,则b=1,2,3,4
∴目标事件个数为1+2+3+3+4+4=17
因此方程ax2+bx+1=0有实根的概率为
17
36
…(6分)
(2)由题意知,ξ=0,1,2,
P(ξ=0)=
17
36
,P(ξ=1)=
2
36
=
1
18
,P(ξ=2)=
17
36

故ξ的分布列为

(3)记“先后两次出现的点数中有4”为事件M,
“方程ax2+bx+1=0有实根”为事件N,则
P(M)=
11
36
,P(MN)=
5
36
P(N/M)=
P(MN)
P(M)
=
5
36
11
36
=
5
11
…(4分)
点评:本题主要考查离散型随机变量的分布列和古典概型,古典概型要求能够列举出所有事件和发生事件的个数,本题可以列举出所有事件,概率问题同其他的知识点结合在一起,实际上是以概率问题为载体,主要考查的是另一个知识点,本题考查一元二次方程的解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设关于x的一元二次方程ax2+bx+1=0
(Ⅰ)设a和b分别是先后抛掷一枚骰子得到的点数,求上述方程没有实根的概率;
(Ⅱ)若a是从区间(0,3)内任取的一个数,b=2,求上述方程没有实根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设a和b分别是先后抛掷一枚骰子得到的点数,且随机变量ξ表示方程ax2+bx+1=0的实根的个数(相等的两根算一个根).
(1)求方程ax2+bx+1=0无实根的概率;
(2)求随机变量ξ的概率分布列;
(3)求在先后两次出现的点数中有4的条件下,方程ax2+bx+1=0有实根的概率.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江苏省无锡市宜兴市高二(下)期中数学试卷(理科)(解析版) 题型:解答题

设a和b分别是先后抛掷一枚骰子得到的点数,且随机变量ξ表示方程ax2+bx+1=0的实根的个数(相等的两根算一个根).
(1)求方程ax2+bx+1=0无实根的概率;
(2)求随机变量ξ的概率分布列;
(3)求在先后两次出现的点数中有4的条件下,方程ax2+bx+1=0有实根的概率.

查看答案和解析>>

科目:高中数学 来源:2008-2009学年江苏省无锡一中高二(下)期中数学试卷(理科)(解析版) 题型:解答题

设a和b分别是先后抛掷一枚骰子得到的点数,且随机变量ξ表示方程ax2+bx+1=0的实根的个数(相等的两根算一个根).
(1)求方程ax2+bx+1=0无实根的概率;
(2)求随机变量ξ的概率分布列;
(3)求在先后两次出现的点数中有4的条件下,方程ax2+bx+1=0有实根的概率.

查看答案和解析>>

同步练习册答案