精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2+x及两个正整数数列{an},{bn}若a1=3,an+1=f'(an)对任意n∈N*恒成立,且b1=1,b2=λ,且当n≥2时,有
b
2
n
-1<bn+1bn-1
b
2
n
+1
;又数列{cn}满足:2(λbn+cn-1)=2nλbn+an-1.
(1)求数列{an}及{bn}的通项公式;
(2)求数列{cn}的前n项和Sn
(3)证明存在k∈N*,使得
Cn+1
cn
Ck+1
ck
对任意n∈N*均成立.
分析:(1)根据
b
2
n
-1<bn-1bn+1
b
2
n
+1
,{bn}是正整数列,可知bn-1bn+1=
b
2
n
,利用b1=1,b2=λ,可得bn=λn-1因为f(x)=x2+x,所以f'(x)=2x+1,根据an+1=f'(an),可得an+1=2an+1,从而可知数列{an+1}是以4为首项,以2为公比的等比数列,故可求数列{an}}的通项公式;
(2)由2(λbn+cn-1)=2nλbn+an-1得:cn=λ(n-1)bn+
1
2
(an+1)
,从而可得cn=(n-1)λn+2n,设Tn=λ2+2λ2+3λ4+…+(n-2)λn-1+(n-1)λn,当λ≠1时,利用错位相减法可求和;当λ=1时,Tn=
n(n-1)
2
.这时数列{an}的前n项和Sn=
n(n-1)
2
+2n+1-2

(3)通过分析,推测数列{
cn+1
cn
}
的第一项
c2
c1
最大,证明
cn+1
cn
c2
c1
=
λ2+4
2
,即可知存在k=1,使得
cn+1
cn
ck+1
ck
=
c2
c1
对任意n∈N*均成立.
解答:(1)解:由
b
2
n
-1<bn-1bn+1
b
2
n
+1

因为{bn}是正整数列,所以bn-1bn+1=
b
2
n

于是{bn}是等比数列,
又b1=1,b2=λ,所以bn=λn-1(2分)
因为f(x)=x2+x,所以f'(x)=2x+1,
∵an+1=f'(an
∴an+1=2an+1
∴an+1+1=2(an+1)
∵a1=3,
∴数列{an+1}是以4为首项,以2为公比的等比数列.
∴an+1=4×2n-1=2n+1
an=2n+1-1(5分)
(2)解:由2(λbn+cn-1)=2nλbn+an-1得:cn=λ(n-1)bn+
1
2
(an+1)

bn=λn-1an=2n+1-1得:cn=(n-1)λn+2n(6分)
Tn=λ2+2λ2+3λ4+…+(n-2)λn-1+(n-1)λn
λTn=λ3+2λ4+3λ5+…+(n-2)λn+(n-1)λn+1
当λ≠1时,①式减去②式,得(1-λ)Tn=λ2+λ3+…+λn-(n-1)λn+1=
λ2-λn+1
1-λ
-(n-1)λn+1

于是,Tn=
λ2-λn+1
(1-λ)2
-
(n-1)λn+1
(1-λ)
=
(n-1)λn+2-nλn+1+λ2
(1-λ)2
(8分)
这时数列{an}的前n项和Sn=
(n-1)λn+2-nλn+1+λ2
(1-λ)2
+2n+1-2
(9分)
当λ=1时,Tn=
n(n-1)
2
.这时数列{an}的前n项和Sn=
n(n-1)
2
+2n+1-2
(10分)
(3)证明:通过分析,推测数列{
cn+1
cn
}
的第一项
c2
c1
最大,
下面证明:
cn+1
cn
c2
c1
=
λ2+4
2
,n≥2③(11分)
由λ>0知cn>0要使③式成立,只要2cn+1<(λ2+4)cn(n≥2)
因为(λ2+4)cn=(λ2+4)(n-1)λn+(λ2+1)2n>4λ•(n-1)λn+4×2n=4(n-1)λn+1+2n+2≥2nλn+1+2n+2=2cn+1,n≥2. 所以③式成立.
因此,存在k=1,使得
cn+1
cn
ck+1
ck
=
c2
c1
对任意n∈N*均成立.(14分)
点评:本题以数列的性质为载体,考查数列通项的求解,考查数列与不等式的联系,考查了错位相减法求和,同时考查了分类讨论的数学数学,综合性较强.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案