精英家教网 > 高中数学 > 题目详情

【题目】已知二次函数f(x)=ax2+bx+c.
(1)若f(﹣1)=0,试判断函数f(x)零点个数;
(2)若对x1x2∈R,且x1<x2 , f(x1)≠f(x2),证明方程f(x)= 必有一个实数根属于(x1 , x2).
(3)是否存在a,b,c∈R,使f(x)同时满足以下条件
①当x=﹣1时,函数f(x)有最小值0;
②对任意x∈R,都有0≤f(x)﹣x≤ 若存在,求出a,b,c的值,若不存在,请说明理由.

【答案】
(1)解:∵f(﹣1)=0,

∴a﹣b+c=0即b=a+c,

故△=b2﹣4ac=(a+c)2﹣4ac=(a﹣c)2

当a=c时,△=0,函数f(x)有一个零点;

当a≠c时,△>0,函数f(x)有两个零点


(2)解:令g(x)=f(x)﹣

∵g(x1)=f(x1)﹣ =

g(x2)=f(x2)﹣ =

∴g(x1)g(x2)=

∵f(x1)≠f(x2),

故g(x1)g(x2)<0

∴g(x)=0在(x1,x2)内必有一个实根.

即方程f(x)= 必有一个实数根属于(x1,x2


(3)解:假设a,b,c存在,由①得 =﹣1, =0

∴b=2a,c=a.

由②知对任意x∈R,都有0≤f(x)﹣x≤

令x=1得0≤f(1)﹣1≤0

∴f(1)=1

∴a+b+c=1

解得:a=c= ,b=

当a=c= ,b= 时,f(x)= x2+ x+ = (x+1)2,其顶点为(﹣1,0)满足条件①,

又f(x)﹣x= x2 x+ = (x﹣1)2,对任意x∈R,都有0≤f(x)﹣x≤ ,满足条件②.

∴存在a=c= ,b= ,使f(x)同时满足条件①、②.


【解析】(1)通过对二次函数对应方程的判别式进行分析判断方程根的个数,从而得到零点的个数;(2)若方程f(x)= 必有一个实数根属于(x1 , x2),则函数g(x)=f(x)﹣ 在(x1 , x2)必有一零点,进而根据零点存在定理,可以证明(3)根据条件①和二次函数的图象和性质,可得b=2a,c=a,令x=1,结合条件②,可求出a,b,c的值.
【考点精析】本题主要考查了二次函数的性质和函数的零点的相关知识点,需要掌握当时,抛物线开口向上,函数在上递减,在上递增;当时,抛物线开口向下,函数在上递增,在上递减;函数的零点就是方程的实数根,亦即函数的图象与轴交点的横坐标.即:方程有实数根,函数的图象与坐标轴有交点,函数有零点才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知公比为负值的等比数列{an}中,a1a5=4,a4=﹣1.
(1)求数列{an}的通项公式;
(2)设bn= + +…+ ,求数列{an+bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论函数的单调性;

(2)若在定义域内恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在“新零售”模式的背景下,某大型零售公司咪推广线下分店,计划在市的区开设分店,为了确定在该区开设分店的个数,该公司对该市已开设分店听其他区的数据作了初步处理后得到下列表格.记表示在各区开设分店的个数, 表示这个个分店的年收入之和.

(个)

2

3

4

5

6

(百万元)

2.5

3

4

4.5

6

(1)该公司已经过初步判断,可用线性回归模型拟合的关系,求关于的线性回归方程

(2)假设该公司在区获得的总年利润(单位:百万元)与之间的关系为,请结合(1)中的线性回归方程,估算该公司应在区开设多少个分时,才能使区平均每个分店的年利润最大?

(参考公式: ,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆和定点,由圆外一点向圆引切线,切点为,且满足

(1)求实数满足的等量关系

(2)求线段长的最小值

(3)若以为圆心所作的圆与圆有公共点,试求半径取最小值时圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(1,2), =(2,﹣2).
(1)设 =4 + ,求
(2)若 + 垂直,求λ的值;
(3)求向量 方向上的投影.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,点A(0,3),直线l:y=2x﹣4.设圆C的半径为1,圆心在l上.
(1)若圆心C也在直线y=﹣x+5上,求圆C的方程;
(2)在(1)的条件下,过点A作圆C的切线,求切线的方程;
(3)若圆C上存在点M,使|MA|=|MO|,求圆心C的横坐标a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定点及椭圆过点的动直线与椭圆相交于 两点.

1)若线段中点的横坐标是求直线的方程;

(2)设点的坐标为求证: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知多面体中,四边形为平行四边形, 平面,且 .

(Ⅰ)求证:平面平面

(Ⅱ)若直线与平面所成的角的正弦值为,求的值.

查看答案和解析>>

同步练习册答案