精英家教网 > 高中数学 > 题目详情
已知抛物线的顶点在坐标原点,对称轴为轴,焦点为,抛物线上一点的横坐标为2,且.
(1)求抛物线的方程;
(2)过点作直线交抛物线于两点,求证: .
(1)(2)详见解析.

试题分析:(1)可利用待定系数法设抛物线方程为求解;
(2)因为是直线与圆锥曲线的相交问,可以设直线方程(斜率不存在时单独讨论),然后联立抛物线方程和直线方程运用韦达定理结合条件来求解.
试题解析:解:(1)由题设抛物线的方程为:
则点的坐标为,点的一个坐标为,2分
,∴,4分
,∴,∴.6分
(2)设两点坐标分别为
法一:因为直线当的斜率不为0,设直线当的方程为
方程组

因为
所以
=0,
所以.
法二:①当的斜率不存在时,的方程为,此时
所以.       8分
的斜率存在时,设的方程为
方程组
所以10分
因为
所以
所以.
由①②得.12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆)的焦距为,且过点(),右焦点为.设上的两个动点,线段的中点的横坐标为,线段的中垂线交椭圆两点.

(1)求椭圆的方程;
(2)求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,左右焦点分别为,且.
(1)求椭圆C的方程;
(2)过点的直线与椭圆相交于两点,且,求的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆与椭圆中心在原点,焦点均在轴上,且离心率相同.椭圆的长轴长为,且椭圆的左准线被椭圆截得的线段长为,已知点是椭圆上的一个动点.

⑴求椭圆与椭圆的方程;
⑵设点为椭圆的左顶点,点为椭圆的下顶点,若直线刚好平分,求点的坐标;
⑶若点在椭圆上,点满足,则直线与直线的斜率之积是否为定值?若是,求出该定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的左、右焦点分别为,离心率为,P是椭圆上一点,且面积的最大值等于2.
(1)求椭圆的方程;
(2)直线y=2上是否存在点Q,使得从该点向椭圆所引的两条切线相互垂直?若存在,求点Q的坐标;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆两焦点坐标分别为,,一个顶点为.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)是否存在斜率为的直线,使直线与椭圆交于不同的两点,满足. 若存在,求出的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C=1(a>b>0)的两个焦点F1F2和上下两个顶点B1B2是一个边长为2且∠F1B1F2为60°的菱形的四个顶点.
(1)求椭圆C的方程;
(2)过右焦点F2的斜率为k(k≠0)的直线l与椭圆C相交于EF两点,A为椭圆的右顶点,直线AEAF分别交直线x=3于点MN,线段MN的中点为P,记直线PF2的斜率为k′,求证: k·k′为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若一个动点到两个定点的距离之差的绝对值等于8,则动点M的轨迹方程为 (    )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点是双曲线右支上一点,是双曲线的左焦点,且双曲线的一条渐近线恰是线段的中垂线,则该双曲线的离心率是(      )
A.B.C.D.

查看答案和解析>>

同步练习册答案