精英家教网 > 高中数学 > 题目详情

【题目】已知圆的半径为,圆心在第一象限,且与直线轴都相切.

Ⅰ)求圆的方程.

Ⅱ)过的直线与圆相交所得的弦长为,求直线的方程.

【答案】12

【解析】试题分析:(1)设圆标准方程,根据与轴相切得圆心坐标可设为,再根据与直线相切得,圆心到直线距离等于半径2,解出参数a即得圆的方程.2先根据点斜式设直线方程,计算圆心到直线距离,再根据垂径定理列方程解出斜率,最后讨论斜率不存在时是否满足题意

试题解析: 圆与轴相切,且半径为

∴圆心坐标可设为

∵圆心到直线距离等于半径,

,解得

的方程为

直线方程为,即

易知圆心的距离为

即:

解得 的方程为:

不存在时, ,同样符合条件,

综上所述的方程为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在正四棱锥中, 分别为 的中点.

(Ⅰ)求证: 平面

(Ⅱ)求异面直线所成角的余弦值;

(Ⅲ)若平面与棱交于点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是一段圆锥曲线,曲线与两个坐标轴的交点分别是 .

Ⅰ)若该曲线表示一个椭圆,设直线过点且斜率是,求直线与这个椭圆的公共点的坐标.

Ⅱ)若该曲线表示一段抛物线,求该抛物线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,以坐标原点为极点, 轴正半轴为极轴建立极坐标系,已知曲线的极坐标方程为: ,直线的参数方程是为参数, ).

(1)求曲线的直角坐标方程;

(2)设直线与曲线交于两点,且线段的中点为,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学数学老师分别用两种不同教学方式对入学数学平均分和优秀率都相同的甲、乙两个高一新班(人数均为20人)进行教学(两班的学生学习数学勤奋程度和自觉性一致),数学期终考试成绩茎叶图如下:

(1)学校规定:成绩不低于75分的为优秀,请填写下面的联表,并判断有多大把握认为“成绩优秀与教学方式有关”.

附:参考公式及数据

(2)从两个班数学成绩不低于90分的同学中随机抽取3名,设为抽取成绩不低于95分同学人数,求的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)当时,证明:

(Ⅱ)当,且时,不等式成立,求实数的取值范围 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某网站针对2015年中国好声音歌手A,B,C三人进行网上投票,结果如下

观众年龄

支持A

支持B

支持C

20岁以下

100

200

600

20岁以上(含20岁)

100

100

400


(1)在所有参与该活动的人中,用分层抽样的方法抽取n人,其中有6人支持A,求n的值.
(2)在支持C的人中,用分层抽样的方法抽取5人作为一个总体,从这5人中任意选取2人,求恰有1人在20岁以下的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,(其中是自然对数的底数).

(1) 使得不等式成立,试求实数的取值范围.

(2)若,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(文)已知矩形ABB1A1是圆柱体的轴截面,O、O1分别是下底面圆和上底面圆的圆心,母线长与底面圆的直径长之比为2:1,且该圆柱体的体积为32π,如图所示.

(1)求圆柱体的侧面积S的值;
(2)若C1是半圆弧 的中点,点C在半径OA上,且OC= OA,异面直线CC1与BB1所成的角为θ,求sinθ的值.

查看答案和解析>>

同步练习册答案