【题目】若执行如图所示的程序框图,输出S的值为3,则判断框中应填入的条件是( )
A.k<6?
B.k<7?
C.k<8?
D.k<9?
【答案】C
【解析】解:根据程序框图,运行结果如下:
S k
第一次循环 log23 3
第二次循环 log23log34 4
第三次循环 log23log34log45 5
第四次循环 log23log34log45log56 6
第五次循环 log23log34log45log56log67 7
第六次循环 log23log34log45log56log67log78=log28=3 8
故如果输出S=3,那么只能进行六次循环,故判断框内应填入的条件是k<8.
故选:C.
【考点精析】解答此题的关键在于理解算法的循环结构的相关知识,掌握在一些算法中,经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况,这就是循环结构,循环结构可细分为两类:当型循环结构和直到型循环结构.
科目:高中数学 来源: 题型:
【题目】某班主任对全班50名学生的学习积极性和对待班级工作的态度进行了调查,统计数据如下表所示:
分类 | 积极参加 班级工作 | 不太主动参 加班级工作 | 总计 |
学习积极性高 | 18 | 7 | 25 |
学习积极性一般 | 6 | 19 | 25 |
总计 | 24 | 26 | 50 |
(1)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是多少?抽到不太主动参加班级工作且学习积极性一般的学生的概率是多少?
(2)试运用独立性检验的思想方法分析:学生的学习积极性与对待班级工作的态度是否有关,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)椭圆C:+=1(a>b>0)与x轴交于A、B两点,点P是椭圆C上异于A、B的任意一点,直线PA、PB分别与y轴交于点M、N,求证:为定值b2﹣a2.
(2)由(1)类比可得如下真命题:双曲线C:=1(a>0,b>0)与x轴交于A、B两点,点P是双曲线C上异于A、B的任意一点,直线PA、PB分别与y轴交于点M、N,则为定值.请写出这个定值(不要求给出解题过程).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某农科所对冬季昼夜温差大小与某反季大豆新品种发芽多少之间的关系进行了分析研究,分别记录了2016年12月1日至12月5日每天的昼夜温差以及实验室100颗种子中的发芽数,得到的数据如下表所示:
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
温差x/℃ | 10 | 11 | 13 | 12 | 8 |
发芽数y/颗 | 23 | 25 | 30 | 26 | 16 |
该农科所确定的研究方案是:先从这五组数据中选取两组,用剩下的三组数据求线性回归方程,再对被选取的两组数据进行检验.
(1)求选取的两组数据恰好是不相邻的两天数据的概率.
(2)若选取的是12月1日和12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程.
(3)由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2,则认为得到的线性回归方程是可靠的,据此说明(2)中所得线性回归方程是否可靠?并估计当温差为9 ℃时,100颗种子中的发芽数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com