精英家教网 > 高中数学 > 题目详情
已知 f(α)=
sin(
2
+α)+2sin(π-α)
3cos(
π
2
-α)-cos(π-α)

(Ⅰ)化简f(α);
(Ⅱ)已知tanα=3,求f(α)的值.
考点:运用诱导公式化简求值,同角三角函数基本关系的运用
专题:计算题,三角函数的求值
分析:(Ⅰ)运用诱导公式即可将f(α)化简求值.
(Ⅱ)由同角三角函数基本关系的运用可得f(α)=
2sinα-cosα
3sinα+cosα
=
2tanα-1
3tanα+1
,代入已知即可求值.
解答: 解:(Ⅰ)f(α)=
sin(
2
+α)+2sin(π-α)
3cos(
π
2
-α)-cos(π-α)
=
2sinα-cosα
3sinα+cosα

(Ⅱ)∵tanα=3,
∴f(α)=
2sinα-cosα
3sinα+cosα
=
2tanα-1
3tanα+1
=
2×3-1
3×3+1
=
1
2
点评:本题主要考查了运用诱导公式化简求值,同角三角函数基本关系的运用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

y=
x2
x2+2
,x∈[-1,1]的值域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:|(
4
9
)-
1
2
-lg5|+
lg22-lg4+1
-5 1-log52=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:对任意x1,x2∈R,(f(x2)-f(x1))(x2-x1)≥0,则“非p”是(  )
A、存在x1,x2∈R,使(f(x2)-f(x1))(x2-x1)<0
B、对任意x1,x2∈R,都有(f(x2)-f(x1))(x2-x1)≤0
C、存在x1,x2∈R,使(f(x2)-f(x1))(x2-x1)≤0
D、对任意x1,x2∈R,都有(f(x2)-f(x1))(x2-x1)<0

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合M={x|
x-2
3
+
x-3
2
=
3
x-2
+
2
x-3
},N={x|
x-6
5
+
x-5
6
=
5
x-6
+
6
x-5
},则M∩N=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列五种写法,其中错误写法的个数为(  )
(1){0}∈{0,2,3};(2)∅⊆{0};(3){1,2,0}(4)0∈∅;(5)0∩∅=∅
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数经过原点的是(  )
A、y=2x-1
B、y=x-1
C、y=log2x
D、y=-x2+1

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正三棱柱ABC-A1B1C1中,点D为棱AB的中点,BC=1,AA1=
3

(1)求证:BC1∥平面A1DC;
(2)求三棱锥D-A1B1C 的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx+
1
x
+ax,x∈(0,+∞)(a为实常数).若f(x)在[2,+∞)上是单调函数,则a的取值范围是(  )
A、(-∞,-
1
4
]
B、(-∞,-
1
4
]∪[0,+∞)
C、(-∞,0)∪[
1
4
,+∞]
D、(-∞,0)∪(
1
2
,+∞)

查看答案和解析>>

同步练习册答案