精英家教网 > 高中数学 > 题目详情

【题目】如图,已知椭圆C的中心在原点,其一个焦点与抛物线y2=4x的焦点相同,又椭圆C上有一点M(2,1),直线l平行于OM且与椭圆C交于A,B两点,连接MA,MB.

(1)求椭圆C的方程;

(2)当MA,MB与x轴所构成的三角形是以x轴上所在线段为底边的等腰三角形时,求直线l在y轴上截距的取值范围.

【答案】见解析

【解析】

解:(1)抛物线y2=4x的焦点为(,0),又椭圆C上有一点M(2,1),

由题意设椭圆方程为:=1(a>b>0),

解得

∴椭圆C的方程为=1.

(2)∵l∥OMk1=kO M,设直线在y轴上的截距为m,则直线l:y=x+m.

直线l与椭圆C交于A,B两点.

联立消去y得

x2+2mx+2m2-4=0,∴Δ=(2m)2-4(2m2-4)=4(4-m2)>0,

∴m的取值范围是{m|-2<m<2,且m≠0},

设MA,MB的斜率分别为k1,k2

∴k1+k2=0,

则A(x1,y1),B(x2,y2),则k1,k2,x1x2=2m2-4,x1+x2=-2m,

∴k1+k2

=0,

故MA,MB与x轴始终围成等腰三角形时,∴直线l在y轴上的截距m的取值范围是{m|-2<m<2,且m≠0}.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在某校举行的航天知识竞赛中,参与竞赛的文科生与理科生人数之比为,且成绩分布在分数在以上(含的同学获奖. 按文理科用分层抽样的方法抽取人的成绩作为样本得到成绩的频率分布直方图(见下图).

(1)的值,并计算所抽取样本的平均值同一组中的数据用该组区间的中点值作代表);

(2)填写下面的列联表,能否有超过的把握认为获奖与学生的文理科有关

文科生

理科生

合计

获奖

不获奖

合计

附表及公式:

,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cos xsin 2x,下列结论中正确的是________(填入正确结论的序号).

①y=f(x)的图象关于点(2π,0)中心对称;

②y=f(x)的图象关于直线x=π对称;

③f(x)的最大值为

④f(x)既是奇函数,又是周期函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了研究“教学方式”对教学质量的影响,某高中老师分别用两种不同的教学方式对入学数学平均分数和优秀率都相同的甲、乙两个高一新班进行教学(勤奋程度和自觉性都一样).如图茎叶图为甲、乙两班(每班均为20人)学生的数学期末考试成绩.

(1)现从甲班数学成绩不低于80分的同学中随机抽取两名同学,求成绩为87分的同学至少有一名被抽中的概率;

(2)学校规定:成绩不低于75分的为优秀,请填写列联表,并判断有多大把握认为“成绩优秀与教学方式有关”.

甲班

乙班

合计

优秀

不优秀

合计

参考公式与临界值表:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的方程为=1(a>b>0),右焦点为F(c,0)(c>0),方程ax2+bx-c=0的两实根分别为x1,x2,则P(x1,x2)( )

A.必在圆x2+y2=2内

B.必在圆x2+y2=2外

C.必在圆x2+y2=1外

D.必在圆x2+y2=1与圆x2+y2=2形成的圆环之间

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆 过椭圆 的短轴端点, 分别是圆与椭圆上任意两点,且线段长度的最大值为3.

(1)求椭圆的方程;

(2)过点作圆的一条切线交椭圆两点,求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某学校高三年级共800名男生中随机抽取50人测量身高.据测量,被测学生身高全部介于155 cm到195 cm之间,将测量结果按如下方式分成八组:第一组[155,160);第二组[160,165);…;第八组[190,195].如图是按上述分组方法得到的频率分布直方图的一部分.已知第一组与第八组人数相同,第六组、第七组、第八组人数依次构成等差数列.

)估计这所学校高三年级全体男生身高在180 cm以上(含180 cm)的人数;

)求第六组、第七组的频率并补充完整频率分布直方图(用虚线标出高度);

(III)若从身高属于第六组和第八组的所有男生中随机抽取两人,记他们的身高分别为x、y,求事件“|x-y|≤5”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班主任对全班50名学生的学习积极性和对待班级工作的态度进行了调查,统计数据如下表所示:

积极参加班级工作

不太主动参加班级工作

合计

学习积极性高

18

7

25

学习积极性一般

6

19

25

合计

24

26

50

(1)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是多少?抽到不太主动参加班级工作且学习积极性一般的学生的概率是多少?

(2)试运用独立性检验的思想方法分析:学生的学习积极性与对待班级工作的态度是否有关?并说明理由.

参考公式与临界值表:K2.

P(K2≥k)

0.100

0.050

0.025

0.010

0.001

k

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:ρsin2θ=2acos θ(a>0),过点P(-2,-4)的直线l: (t为参数)与曲线C相交于M,N两点.

(1)求曲线C的直角坐标方程和直线l的普通方程;

(2)若|PM|,|MN|,|PN|成等比数列,求实数a的值.

查看答案和解析>>

同步练习册答案