精英家教网 > 高中数学 > 题目详情
13.已知偶函数f(x)定义域R,且在[0,+∞)上是减函数,比较f(-$\frac{3}{4}$)和f(a2-a+1)的大小.

分析 根据函数奇偶性和单调性之间的关系即可.

解答 解:∵f(x)是R上的偶函数,且在(-∞,0)上是增函数,
∴f(x)在(0,+∞)上是减函数.
又∵a2-a+1=(a-$\frac{1}{2}$)2+$\frac{3}{4}$≥$\frac{3}{4}$,
∴f(a2-a+1)≤f($\frac{3}{4}$)=f(-$\frac{3}{4}$).

点评 本题考查函数的奇偶性和单调性的运用,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.(1)已知不等式|2x+t|-t≤8的解集是{x|-5≤x≤4},求实数t;
(2)已知实数x,y,z满足x2+$\frac{1}{4}$y2+$\frac{1}{9}$z2=2,求x+y+z的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.非零向量 $\overrightarrow{a}$,$\overrightarrow{b}$夹角为120°,且|$\overrightarrow{a}$-$\overrightarrow{b}$|=2,则|$\overrightarrow{a}$+$\overrightarrow{b}$|的取值范围为(  )
A.[1,$\sqrt{3}$]B.[2,$\frac{4\sqrt{3}}{3}$]C.[$\frac{2\sqrt{3}}{3}$,4)D.[1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数y=3tan(2x+$\frac{π}{3}$)的对称中心坐标是($\frac{kπ}{4}-\frac{π}{6},0$),k∈Z,单调增区间是($-\frac{5π}{12}+\frac{kπ}{2},\frac{π}{12}+\frac{kπ}{2}$),k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.终边在折线y=$\sqrt{3}$|x|所有角的集合是{α|α=60°+k•360°或α=120°+k•360°,k∈Z},在这个集合中,介于[-360°,360°)的角的集合是{-300°,-240°60°,120°}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求下列函数的单调区间
(1)y=$\frac{1}{{x}^{2}-4x+5}$;
(2)y=$\sqrt{{x}^{2}-x-6}$;
(3)y=$\frac{1}{\sqrt{-{x}^{2}-2x+3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知m,n∈R,函数f(x)=ln(x+m)的图象与函数g(x)=ex-1+n的图象在x=1处有公共的切线.
(1)求m,n的值;
(2)设b>a>0,求证:$\sqrt{ab}<\frac{b-a}{f(b)-f(a)}<\frac{a+b}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知圆C:(x-3)2+(y-2)2=2,直线l:3x+4y-12=0,直线l与圆C相交于M、N两点,求直线l被圆C所截得的弦长MN.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若平面α∥平面β,l?α,则l与β的位置关系是(  )
A.l与β相交B.l与β平行C.l在β内D.无法判定

查看答案和解析>>

同步练习册答案