精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=loga ,g(x)=1+loga(x﹣1),(a>0且a≠1),设f(x)和g(x)的定义域的公共部分为D,
(1)求集合D;
(2)当a>1时.若不等式g(x﹣ )﹣f(2x)>2在D内恒成立,求a的取值范围;
(3)是否存在实数a,当[m,n]D时,f(x)在[m,n]上的值域是[g(n),g(m)],若存在,求实数a的取值范围,若不存在说明理由.

【答案】
(1)解:f(x)的定义域为:

>0,

∴x>3或x<﹣3;

g(x)的定义域为:

x﹣1>0,

∴x>1,

∴集合D为(3,+∞)


(2)解:1+loga(x﹣ )﹣loga >2,

∴loga >1,

∴a<

设h(x)= ,t=2x﹣3,

∴g(t)= = (t+ )+

∴g(t)>g(3)=

∴1<a≤


(3)解:f(x)=loga(1﹣ ),μ(t)=1﹣ 在(3,+∞)上递增,μ(3)=0,

当a>1时,f(x)在3,+∞)上递增,g(x)在3,+∞)上递增,

当m<n时,g(m)<g(n),不合题意,舍去;

当0<a<1时,f(x)在3,+∞)上递减,g(x)在3,+∞)上递减,

由f(m)=g(m),f(n)=g(n),

∴m,n是f(x)=g(x)的两根,

=a(x﹣1),

∴ax2+(2a﹣1)x﹣3a+3=0,

∴m+n>6,mn>9,

∴a<

又m+n>2

∴a< 或a>

又△>0,(2a﹣1)2﹣4a(3﹣3a)>0

∴a< 或a>

∴0<a<


【解析】(1)利用对数函数的定义求定义域即可;(2)整理不等式得a< ,构造函数g(t)= = (t+ )+ ,求出g(t)的最小值;(3)对参数a进行分类讨论,当a>1时,f(x)在3,+∞)上递增,g(x)在3,+∞)上递增,不合题意,舍去;
当0《a<1时,f(x)在3,+∞)上递减,g(x)在3,+∞)上递减,构造m,n是f(x)=g(x)的两根,利用二次方程有解求出a的范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对于函数f(x)定义域中任意的x1 , x2(x1≠x2)有如下结论
1)f(x1+x2)=f(x1)f(x2
2)f(x1x2)=f(x1)+f(x2
3) >0
4)f( )<
5)f( )>
6)f(﹣x)=f(x).
当f(x)=lgx时,上述结论正确的序号为 . (注:把你认为正确的命题的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知下列三个命题:
①若一个球的半径缩小到原来的 ,则其体积缩小到原来的 ;
②若两组数据的平均数相等,则它们的标准差也相等;
③直线x+y+1=0与圆x2+y2= 相切.
其中真命题的序号是( )
A.①②③
B.①②
C.①③
D.②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某车间生产某种产品,固定成本是万元,每生产件产品成本增加元,根据经验,当年产量少于400件时,总收益(成本与总利润的和,单位:元)是年产量(单位:件)的二次函数;,当年产量不少于件时,RQ的一次函数,以下是QR的部分数据:

Q/

50

200

350

500

650

R/

23750

80000

113750

125000

1332500

问:每年生产多少件产品时,总利润最大?最大利润为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=lg(x2+ax﹣a﹣1),给出下述命题:
①f(x)有最小值;
②当a=0时,f(x)的值域为R;
③若f(x)在区间[2,+∞)上单调递增,则实数a的取值范围是a≥﹣4;
④a=1时,f(x)的定义域为(﹣1,0);
则其中正确的命题的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知全集U=R,集合 ,B={x|1<x<6}
(1)求A∩UB;
(2)已知C={x|a≤x≤a+1},若A∩C=C,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知指数函数y=g(x)满足:g(3)=8,定义域为R的函数f(x)= 是奇函数.
(1)确定y=f(x)和y=g(x)的解析式;
(2)若对任意的x∈[1,4],不等式f(2x﹣3)+f(x﹣k)>0恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线的参数方程为为参数),若以直角坐标系中的原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为为实数.

1)求曲线的普通方程和曲线的直角坐标方程;

2)若曲线与曲线有公共点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为考察高中生的性别与是否喜欢数学课程之间的关系,在我市某普通中学高中生中随机抽取200名学生,得到如下2×2列联表:

喜欢数学课

不喜欢数学课

合计

30

60

90

20

90

110

合计

50

150

200

经计算K2≈6.06,根据独立性检验的基本思想,约有(填百分数)的把握认为“性别与喜欢数学课之间有关系”.

查看答案和解析>>

同步练习册答案