精英家教网 > 高中数学 > 题目详情

【题目】已知集合A={x|x2﹣2x﹣3≤0,x∈R},B={x|m﹣1≤x≤m+1,x∈R,m∈R}

(1)若A∩B=[1,3],求实数m的值;

(2)若ARB,求实数m的取值范围.

【答案】(1)m=1;(2)m>4或m<﹣2.

【解析】分析:(1)由题意,求得集合,根据,列出方程即可求解实数的值;

(2)由(1)中,求得,列出方程,即可求解实数的取值范围

详解:(1)∵集合A={x|x2﹣2x﹣3≤0,x∈R}={x|﹣1≤x≤3},

B={x|m﹣1≤x≤m+1,x∈R,m∈R},A∩B=[1,3],

m﹣1=1,解得m=2,此时B={x|1≤x≤3},成立,

故m=1.

(2)∵RB={x|x<m﹣1或x>m+1},ARB,

∴m﹣1>3或m+1<﹣1,

解得m4或m<﹣2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数fx)=cos(2x-).

(1)利用“五点法”,完成以下表格,并画出函数fx)在一个周期上的图象;

(2)求函数fx)的单调递减区间和对称中心的坐标;

(3)如何由y=cosx的图象变换得到fx)的图象.

2x-

0

π

x

fx

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=sin(ωx+ )向右平移 个单位后,所得的图象与原函数图象关于x轴对称,则ω的最小正值为(
A.1
B.2
C.
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,命题;命题.

(1)为真命题,求的取值范围;

(2)为真命题,求的取值范围;

(3)为假命题,为假命题,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分)已知圆有以下性质:

过圆上一点的圆的切线方程是.

为圆外一点,过作圆的两条切线,切点分别为则直线的方程为.

若不在坐标轴上的点为圆外一点,过作圆的两条切线,切点分别为,则垂直,即,且平分线段.

(1)类比上述有关结论,猜想过椭圆上一点的切线方程(不要求证明);

(2)过椭圆外一点作两直线,与椭圆相切于两点,求过两点的直线方程;

(3)若过椭圆外一点不在坐标轴上)作两直线,与椭圆相切于两点,求证:为定值,且平分线段.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】日前,扬州下达了2018年城市建设和环境提升重点工程项目计划其中将对一块以O为圆心,R(R为常数,单位:米)为半径的半圆形荒地进行治理改造,如图所示,△OBD区域用于儿童乐园出租,弓形BCD区域(阴影部分)种植草坪,其余区域用于种植观赏植物.已知种植草坪和观赏植物的成本分别是每平方米5元和55元,儿童乐园出租的利润是每平方米95元.

(1)设∠BOD=θ(单位:弧度),用θ表示弓形BCD的面积S=f(θ);

(2)如果市规划局邀请你规划这块土地,如何设计∠BOD的大小才能使总利润最大?并求出该最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《城市规划管理意见》里面提出“新建住宅要推广街区制,原则上不再建设封闭住宅小区,已建成的封闭小区和单位大院要逐步打开”,这个消息在网上一石激起千层浪,各种说法不一而足.某网站为了解居民对“开放小区”认同与否,从岁的人群中随机抽取了人进行问卷调查,并且做出了各个年龄段的频率分布直方图(部分)如图所示,同时对人对这“开放小区”认同情况进行统计得到下表:

(Ⅰ)完成所给的频率分布直方图,并求的值;

(Ⅱ)如果从两个年龄段中的“认同”人群中,按分层抽样的方法抽取6人参与座谈会,然后从这6人中随机抽取2人作进一步调查,求这2人的年龄都在内的概率 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左右焦点分别为 ,左顶点为,上顶点为 的面积为.

(1)求椭圆的方程;

(2)设直线 与椭圆相交于不同的两点 是线段的中点.若经过点的直线与直线垂直于点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知下表为“五点法”绘制函数图象时的五个关键点的坐标(其中).

0

2

0

0

(Ⅰ) 请写出函数的最小正周期和解析式;

(Ⅱ) 求函数的单调递增区间;

(Ⅲ) 求函数在区间上的取值范围.

查看答案和解析>>

同步练习册答案