精英家教网 > 高中数学 > 题目详情
19、某食品企业一个月内被消费者投诉的次数用ξ表示,椐统计,随机变量ξ的概率分布如下:
(Ⅰ)求a的值和ξ的数学期望;
(Ⅱ)假设一月份与二月份被消费者投诉的次数互不影响,求该企业在这两个月内共被消费者投诉2次的概率.
分析:(1)对于随机变量的所有可能的取值,其相应的概率之和都是1,即P1+P2+…=1.借此,我们可以求出a值,再利用数学期望的定义求解.
(2)由题意得,该企业在这两个月内共被消费者投诉2次的事件分解成两个互斥事件之和,分别求出这两个事件的概率后相加即可.
解答:解:(1)由概率分布的性质有0.1+0.3+2a+a=1,解得a=0.2,∴ξ的概率分布为

∴Eξ=0*0.1+1*0.3+2*0.4+3*0.2=1.7

(2)设事件A表示“两个月内共被投诉2次”事件A1表示“两个月内有一个月被投诉2次,
另外一个月被投诉0次”;
事件A2表示“两个月内每月均被投诉12次”
则由事件的独立性得
P(A1)=C21P(ξ=0)=2*0.4*0.1=0.08
P(A2)=[P(ξ=1)]2=0.32=0.09
∴P(A)=P(A1)+P(A2)=0.08+0.09=0.17
故该企业在这两个月内共被消费者投诉2次的概率为0.17
点评:本题主要考查离散型随机变量的期望与方差,通常情况下,都是先求出随机变量取每个值时的概率、再得其分布列、最后用数学期望与方差的定义求解;求复杂事件的概率通常有两种方法:一是将所求事件转化为彼此互斥的事件的和,利用概率加法公式计算互斥事件和的概率.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

10、椐统计,某食品企业一个月内被消费者投诉的次数为0,1,2的概率分别为0.4,0.5,0.1
(Ⅰ)求该企业在一个月内共被消费者投诉不超过1次的概率;
(Ⅱ)假设一月份与二月份被消费者投诉的次数互不影响,求该企业在这两个月内共被消费者投诉2次的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•越秀区模拟)某食品企业一个月内被消费者投诉的次数用ξ表示.据统计,随机变量ξ的概率分布如下:
ξ 0 1 2 3
P 0.1 a 2a 0.3
(1)求a的值和ξ的数学期望;
(2)假设一月份与二月份被消费者投诉的次数互不影响,求该企业在这两个月内共被消费者投诉3次的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

某食品企业一个月内被消费者投诉1次的概率为0.3,投诉2次的概率为0.4,投诉3次的概率为0.2,0次投诉的概率为0.1.
(1)求该企业一个月内至少被消费者投诉2次的概率.
(2)假设一月份与二月份被消费者投诉的次数互不影响,求该企业在这两个月内共被消费者投诉2次的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

某食品企业一个月内被消费者投诉的次数用ξ表示,椐统计,随机变量ξ的概率分布如下:
ξ 0 1 2 3
p 0.1 0.3 2a a
(Ⅰ)求a的值
(Ⅱ)求一个月内被消费者投诉不超过2次的概率.

查看答案和解析>>

同步练习册答案