精英家教网 > 高中数学 > 题目详情

【题目】已知向量 =(x,﹣1), =(x﹣2,3), =(1﹣2x,6).
(1)若 ⊥(2 + ),求| |;
(2)若 <0,求x的取值范围.

【答案】
(1)解:若 ⊥(2 + ),则 (2 + )=0,

即2 + =0,

即2x(x﹣2)﹣6+x(1﹣2x)﹣6=0,

则﹣3x﹣12=0,则x=﹣4,

=(﹣6,3),

| |= = = =3


(2)解:若 <0,则x(x﹣2)﹣3<0,

即x2﹣2x﹣3<0,得﹣1<x<3,

即x的取值范围是(﹣1,3)


【解析】(1)若 ⊥(2 + ),则转化为 (2 + )=0,利用向量数量积的公式建立方程求出x即可求| |;(2)若 <0,转化为x的一元二次不等式进行求解即可求x的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(本小题满分10分)已知函数是偶函数.

1)求实数的值;

2)设, 有且只有一个实数解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在上的偶函数,且当时,.

(1)已画出函数轴左侧的图像,如图所示,请补出完整函数的图像,并根据图像写出函数的增区间;

⑵写出函数的解析式和值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将两块三角板按图甲方式拼好,其中

,现将三角板沿折起,使在平面上的射影恰好在上,如图乙.

1)求证:

2)求证: 为线段中点;

3)求二面角的大小的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|x﹣2|﹣|2x+l|.
(I)求不等式f(x)≤x的解集;
(II )若不等式f(x)≥t2﹣t在x∈[﹣2,﹣1]时恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】锐角△ABC中,角A,B,C所对的边分别为a,b,c,且acosB+bcosA= csinC.
(1)求cosC;
(2)若a=6,b=8,求边c的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =( sinx,﹣1), =(cosx,m),m∈R.
(1)若m= ,且 ,求 的值;
(2)已知函数f(x)=2( + ﹣2m2﹣1,若函数f(x)在[0, ]上有零点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数的定义域为,若存在非零实数满足对任意,均有,且,则称上的高调函数. 如果定义域为的函数是奇函数,当时,,且上的8高调函数,那么实数的取值范围为____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一个半径为1的半球材料中截取两个高度均为的圆柱,其轴截面如图所示.设两个圆柱体积之和为

(1)的表达式,并写出的取值范围;

(2)求两个圆柱体积之和的最大值.

查看答案和解析>>

同步练习册答案