精英家教网 > 高中数学 > 题目详情
设抛物线y2=8x的焦点为F,过点F作直线l交抛物线于A、B两点,若线段AB的中点E到y轴的距离为3,则弦AB的长为(  )
A.5B.8C.10D.12
由抛物线方程可知p=4
|AB|=|AF|+|BF|=x1+
p
2
+x2+
p
2
=x1+x2+4
由线段AB的中点E到y轴的距离为3得
1
2
(x1+x2)=3
∴|AB|=x1+x2+4=10
故答案为:10
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设抛物线y2=8x的准线与x轴交于点Q,若过点Q的直线l与抛物线有公共点,则直线l的斜率的取值范围是(  )
A、[-
1
2
1
2
]
B、[-2,2]
C、[-1,1]
D、[-4,4]

查看答案和解析>>

科目:高中数学 来源: 题型:

13、设抛物线y2=8x的准线与x轴交于点Q,则点Q的坐标是
(-2,0)
;若过点Q的直线l与抛物线有公共点,则直线l的斜率的取值范围是
[-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

设抛物线y2=8x的焦点为F,过F,的直线交抛物线于A(x1,y1),B(x2,y2),则y1y2=(  )
A、8B、16C、-8D、-16

查看答案和解析>>

科目:高中数学 来源: 题型:

设抛物线y2=8x的焦点为F,过点F作直线交抛物线于A、B两点,若线段AB的中点E到y轴的距离为3,则AB的长为
10
10

查看答案和解析>>

科目:高中数学 来源: 题型:

设抛物线y2=8x的准线与x轴交于点Q,若过Q点的直线l与抛物线有公共点,求直线l的斜率的取值范围.

查看答案和解析>>

同步练习册答案