分析 p:x2+mx+1=0有两个不相等的负实根,可得$\left\{\begin{array}{l}{△={m}^{2}-4>0}\\{-m<0}\end{array}\right.$,解得m范围.q:方程4x2+4(m-2)x+1=0无实根,可得△<0,解得m范围.若p∧q为假,p∨q为真,则p与q必然一真一假.
解答 解:p:x2+mx+1=0有两个不相等的负实根,∴$\left\{\begin{array}{l}{△={m}^{2}-4>0}\\{-m<0}\end{array}\right.$,解得m>2.
q:方程4x2+4(m-2)x+1=0无实根,∴△=16(m-2)2-16<0,解得1<m<3.
若p∧q为假,p∨q为真,则p与q必然一真一假.
∴$\left\{\begin{array}{l}{m>2}\\{m≤1或m≥3}\end{array}\right.$,或$\left\{\begin{array}{l}{m≤2}\\{1<m<3}\end{array}\right.$,
解得m≥3或1<m≤2.
∴m的取值范围是m≥3或1<m≤2.
点评 本题考查了不等式的性质与解法、一元二次方程的实数根与判别式的关系、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | b<c<a | B. | c<a<b | C. | b<a<c | D. | c<b<a |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | f(1)>f(2) | B. | f(π)<f(3) | C. | $f(\sqrt{e})<f(1.5)$ | D. | f(1.10.5)>f(log32) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{2}{3}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{2}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
数学 物理 | 85~100分 | 85分以下 | 合计 |
85~100分 | 37 | 85 | 122 |
85分以下 | 35 | 143 | 178 |
合计 | 72 | 228 | 300 |
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
A. | 0.5% | B. | 1% | C. | 2% | D. | 5% |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com