精英家教网 > 高中数学 > 题目详情
7.已知p:x2+mx+1=0有两个不相等的负实根,q:方程4x2+4(m-2)x+1=0无实根,若p∧q为假,p∨q为真求:m的取值范围.

分析 p:x2+mx+1=0有两个不相等的负实根,可得$\left\{\begin{array}{l}{△={m}^{2}-4>0}\\{-m<0}\end{array}\right.$,解得m范围.q:方程4x2+4(m-2)x+1=0无实根,可得△<0,解得m范围.若p∧q为假,p∨q为真,则p与q必然一真一假.

解答 解:p:x2+mx+1=0有两个不相等的负实根,∴$\left\{\begin{array}{l}{△={m}^{2}-4>0}\\{-m<0}\end{array}\right.$,解得m>2.
q:方程4x2+4(m-2)x+1=0无实根,∴△=16(m-2)2-16<0,解得1<m<3.
若p∧q为假,p∨q为真,则p与q必然一真一假.
∴$\left\{\begin{array}{l}{m>2}\\{m≤1或m≥3}\end{array}\right.$,或$\left\{\begin{array}{l}{m≤2}\\{1<m<3}\end{array}\right.$,
解得m≥3或1<m≤2.
∴m的取值范围是m≥3或1<m≤2.

点评 本题考查了不等式的性质与解法、一元二次方程的实数根与判别式的关系、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.当实数m分别取什么值时,复数z=(m2+5m+6)+(m2-2m-15)i不是纯虚数(  )
A.m≠5B.m≠3C.m≠-2D.m≠-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知$a={2^{2.1}},b={(\frac{1}{2})^{-\frac{1}{2}}},c={log_5}$4,则a,b,c的大小关系为(  )
A.b<c<aB.c<a<bC.b<a<cD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数 f(x)=2x+x,则 (  )
A.f(1)>f(2)B.f(π)<f(3)C.$f(\sqrt{e})<f(1.5)$D.f(1.10.5)>f(log32)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数$f(x)=ln(2x+\sqrt{4{x^2}+1})+a$,若f(0)=1,则$f(lg2)+f(lg\frac{1}{2})$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若a=22.5,b=lg2.5,c=1,则a,b,c之间的大小关系是(  )
A.c>b>aB.c>a>bC.b>a>cD.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若正方形ABCD边长为2,E为边上任意一点,则AE的长度大于$\sqrt{5}$的概率等于(  )
A.$\frac{2}{3}$B.$\frac{1}{4}$C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.不等式-x2+2x-3>0的解集是∅.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.为考察数学成绩与物理成绩的关系,在高二随机抽取了300名学生.得到下面列联表:
数学
物理
85~100分85分以下合计
85~100分3785122
85分以下35143178
合计72228300
附表:
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(a+c)(b+d)(c+d)}$
现判断数学成绩与物理成绩有关系,则判断的出错率为(  )
A.0.5%B.1%C.2%D.5%

查看答案和解析>>

同步练习册答案