精英家教网 > 高中数学 > 题目详情

【题目】如图,有一直角墙角,两边的长度足够长,若P处有一棵树与两墙的距离分别是4m和am(0<a<12),不考虑树的粗细.现用16m长的篱笆,借助墙角围成一个矩形花圃ABCD.设此矩形花圃的最大面积为u,若将这棵树围在矩形花圃内,则函数u=f(a)(单位m2)的图象大致是(
A.
B.
C.
D.

【答案】B
【解析】解:设AD长为x,则CD长为16﹣x 又因为要将P点围在矩形ABCD内,
∴a≤x≤12
则矩形ABCD的面积为x(16﹣x),
当0<a≤8时,当且仅当x=8时,u=64
当8<a<12时,u=a(16﹣a)
u=
分段画出函数图形可得其形状与C接近
故选:B.
求矩形ABCD面积的表达式,又要注意P点在长方形ABCD内,所以要注意分析自变量的取值范围,并以自变量的限制条件为分类标准进行分类讨论.判断函数的图象即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求曲线在点处的切线方程;

(2)若函数有两个极值点,且.

①求的取值范围;

②求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:,直线

(1)若直线被圆C截得的弦长为 ,求实数的值;

(2)当t =1时,由直线上的动点P引圆C的两条切线,若切点分别为A,B,则直线AB是否恒过一个定点?若存在,求出该定点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为了分析本校高中生的性别与是否喜欢数学之间的关系,在高中生中随机地抽取了90名学生调查,得到了如下列联表:

喜欢数学

不喜欢数学

总计

30

45

25

45

总计

90

(1)求①②③④处分别对应的值;

(2)能有多大把握认为“高中生的性别与喜欢数学”有关?

附:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】表示大于的整数的十位数,例如.已知都是大于的互不相等的整数,现有如下个命题:

①若,则;②

③若是质数,则也是质数;④若成等差数列,则可能成等比数列.

其中所有的真命题为( )

A. B. ③④ C. ①②④ D. ①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是菱形,为等边三角形,是线段上的一点,且平面.

(1)求证:的中点;

(2)若的中点,连接,平面平面,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知从圆C:(x+1)2+(y﹣2)2=2外一点P(x1 , y1)向该圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,则当|PM|取最小值时点P的坐标为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在△ABC中,AB的中点为O,且OA=1,点D在AB的延长线上,且 .固定边AB,在平面内移动顶点C,使得圆M与边BC,边AC的延长线相切,并始终与AB的延长线相切于点D,记顶点C的轨迹为曲线Γ.以AB所在直线为x轴,O为坐标原点如图所示建立平面直角坐标系.
(Ⅰ)求曲线Γ的方程;
(Ⅱ)设动直线l交曲线Γ于E、F两点,且以EF为直径的圆经过点O,求△OEF面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了研究某班学生的脚长x(单位:厘米)和身高y(单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y与x之间有线性相关关系,设其回归直线方程为 = x+ ,已知 xi=225, yi=1600, =4,该班某学生的脚长为24,据此估计其身高为(  )
A.160
B.163
C.166
D.170

查看答案和解析>>

同步练习册答案