如图,在四棱锥中,底面为矩形,底面,、分别是、中点.
(1)求证:平面;
(2)求证:.
(1)参考解析;(2)参考解析
【解析】
试题分析:(1)要证直线与平面平行,根据直线与平面平行的判定定理,需要在平面内找一条直线与已知直线平行,由于本小题中点较多,所以想到作出四边形AMNQ.通过判定平行四边形,然后再用平行四边形的性质得到所需要的两直线平行,这种方法也是在证明直线与平面平行时的常用的方法.
(2)直线与直线垂直的证明根据判断定理,一般需要转化为证明直线与平面的垂直.这题是根据第一步的结论证明AB与平面PAD垂直,从而可得结论.
试题解析:证明:(1)取中点,连结.
因为 是中点,
所以 .
又是中点,,
所以 ,
四边形是平行四边形.所以.因为 平面,平面,
所以 平面. 7分
(2)因为 平面,所以 .
又 是矩形,
所以 .
所以 平面,
所以 .又,
所以 .
考点:1.直线与平面平行的判断定理.2.直线与直线垂直的判断方法.
科目:高中数学 来源:2015届北京海淀区高二上学期期末考试理科数学试卷(解析版) 题型:选择题
已知命题椭圆的离心率,命题与抛物线只有一个公共点的直线是此抛物线的切线,那么( )
(A)是真命题 (B)是真命题
(C)是真命题 (D)是假命题
查看答案和解析>>
科目:高中数学 来源:2015届北京市西城区高二第一学期期末理科数学试卷(解析版) 题型:解答题
已知为椭圆上的三个点,为坐标原点.
(1)若所在的直线方程为,求的长;
(2)设为线段上一点,且,当中点恰为点时,判断的面积是否为常数,并说明理由.
查看答案和解析>>
科目:高中数学 来源:2015届北京市西城区高二第一学期期末理科数学试卷(解析版) 题型:选择题
“”是“方程表示圆”的 ( )
A. 充分而不必要条件 B. 必要而不充分条件
C. 充分必要条件 D. 既不充分也不必要条件
查看答案和解析>>
科目:高中数学 来源:2015届北京市西城区高二第一学期期末文科数学试卷(解析版) 题型:选择题
已知椭圆,为坐标原点.若为椭圆上一点,且在轴右侧,为轴上一点,,则点横坐标的最小值为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源:2015届北京东城(南片)高二上学期期末考试文数学试卷(解析版) 题型:选择题
甲、乙、丙三名毕业生参加某公司人力资源部安排的面试,三人依次进行,每次一人,其中甲、乙两人相邻的概率为
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com