分析 (Ⅰ)消去参数及利亚极坐标与直角坐标互化方法,写出曲线C1,C2的普通方程;
(Ⅱ)直线l的参数方程为:$\left\{\begin{array}{l}x=-4+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t为参数),将其代入曲线C2整理可得:${t^2}-3\sqrt{2}t+4=0$,利用参数的几何运用求|AB|.
解答 解:(Ⅰ)$\left\{\begin{array}{l}x=2\sqrt{5}cosα\\ y=2sinα\end{array}\right.⇒{(\frac{x}{{2\sqrt{5}}})^2}+{(\frac{y}{2})^2}=cos{\;}^2α+{sin^2}α=1$…(1分)
即C1的普通方程为$\frac{x^2}{20}+{\frac{y}{4}^2}=1$.…(3分)
∵ρ2=x2+y2,x=ρcosθ,y=ρsinθ,C2可化为 x2+y2+4x-2y+4=0,…(3分)
即(x+2)2+(y-1)2=1.…(4分)
(Ⅱ)曲线C1左焦点为(-4,0),…(5分)
直线l的倾斜角为$α=\frac{π}{4}$,$sinα=cosα=\frac{{\sqrt{2}}}{2}$.…(6分)
所以直线l的参数方程为:$\left\{\begin{array}{l}x=-4+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t为参数),…(7分)
将其代入曲线C2整理可得:${t^2}-3\sqrt{2}t+4=0$,…(8分)
所以△=${(-3\sqrt{2})^2}-4×4=2>0$.
设A,B对应的参数分别为t1,t2,则${t_1}+{t_2}=3\sqrt{2},{t_1}{t_2}=4$.…(9分)
所以$|{AB}|=|{{t_1}-{t_2}}|=\sqrt{{{({t_1}+{t_2})}^2}-4{t_1}{t_2}}=\sqrt{{{(3\sqrt{2})}^2}-4×4}=\sqrt{2}$.…(10分)
点评 本题考查参数方程的运用,考查参数方程、极坐标方程、普通方程的转化,考查学生的计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | $\sqrt{3}$ | C. | 2 | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\sqrt{5}$ | B. | $\sqrt{3}$ | C. | 1 | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com