精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)讨论函数的单调性;

(2)记的导函数,如果是函数的两个零点,且满足,证明:.

【答案】(1)见解析(2)见解析

【解析】分析:(1)取出函数的导数,结合二次函数的性质,通过讨论的范围,求出函数的单调区间,即可;

(2)求出,令,则,根据函数的单调性证明即可

详解:(1)的定义域为

.

为二次函数,对称轴,且恒过点

(i)当时,,所以上单调递减;

(ii)当时,

,可得.

时, .

时,时,.所以上单调递减;在上单调递增.

时,,.

对任意恒成立,所以上单调递减;

时,.

时,时,.

所以上单调递减,在上单调递增.

综上,当时,上单调递减;在上单调递增.

时, 上单调递减.

时,上单调递减;在上单调递增.

(2).

两式相减,整理得

所以

所以上单调递减,故

,所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】经销商小王对其所经营的某一型号二手汽车的使用年数(0<≤10)与销售价格(单位:万元/辆)进行整理,得到如下的对应数据:

使用年数

2

4

6

8

10

售价

16

13

9.5

7

4.5

(Ⅰ)试求关于的回归直线方程;

(附:回归方程

(Ⅱ)已知每辆该型号汽车的收购价格为万元,根据(Ⅰ)中所求的回归方程,

预测为何值时,小王销售一辆该型号汽车所获得的利润最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若函数是奇函数,求实数的值;

2)若关于的方程在区间上有解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四边形EFGH为空间四边形ABCD的一个截面,若截面为平行四边形.

(1)求证:AB∥平面EFGH

(2)AB4CD6,求四边形EFGH周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,点是圆上一动点,点在线段上,点在半径上,且满足.

(1)在圆上运动时,求点的轨迹的方程

(2)设过点的直线与轨迹交于点不在轴上),垂直于的直线交于点,与轴交于点,若,求点横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xiyi)(i=12n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是

A. yx具有正的线性相关关系

B. 回归直线过样本点的中心(

C. 若该大学某女生身高增加1cm,则其体重约增加0.85kg

D. 若该大学某女生身高为170cm,则可断定其体重比为58.79kg

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P-ABCD中,底面ABCD是边长为2的正方形,,且EPD中点.

I)求证:平面ABCD

II)求二面角B-AE-C的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(1)当时,若函数处的切线与函数相切,求实数的值;

(2)当时,记.证明:当时,存在,使得.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司共有60位员工,为提高员工的业务技术水平,公司拟聘请专业培训机构进行培训.培训的总费用由两部分组成:一部分是给每位参加员工支付400元的培训材料费;另一部分是给培训机构缴纳的培训费.若参加培训的员工人数不超过30人,则每人收取培训费1000元;若参加培训的员工人数超过30人,则每超过1人,人均培训费减少20元.设公司参加培训的员工人数为x人,此次培训的总费用为y元.

(1)求出yx之间的函数关系式;

(2)请你预算:公司此次培训的总费用最多需要多少元?

查看答案和解析>>

同步练习册答案