精英家教网 > 高中数学 > 题目详情

【题目】已知{an}是各项均为正数的等比数列,且a1+a2=6,a1a2=a3
(1)求数列{an}通项公式;
(2){bn} 为各项非零的等差数列,其前n项和为Sn , 已知S2n+1=bnbn+1 , 求数列 的前n项和Tn

【答案】
(1)

解:记正项等比数列{an}的公比为q,

因为a1+a2=6,a1a2=a3

所以(1+q)a1=6,q =q2a1

解得:a1=q=2,

所以an=2n


(2)

因为{bn} 为各项非零的等差数列,

所以S2n+1=(2n+1)bn+1

又因为S2n+1=bnbn+1

所以bn=2n+1, =

所以Tn=3 +5 +…+(2n+1)

Tn=3 +5 +…+(2n﹣1) +(2n+1)

两式相减得: Tn=3 +2( + +…+ )﹣(2n+1)

Tn=3 +( + + +…+ )﹣(2n+1)

即Tn=3+1+ + + +…+ )﹣(2n+1) =3+ ﹣(2n+1)

=5﹣


【解析】(1)通过首项和公比,联立a1+a2=6、a1a2=a3 , 可求出a1=q=2,进而利用等比数列的通项公式可得结论;(2)利用等差数列的性质可知S2n+1=(2n+1)bn+1 , 结合S2n+1=bnbn+1可知bn=2n+1,进而可知 = ,利用错位相减法计算即得结论.
【考点精析】解答此题的关键在于理解等比数列的通项公式(及其变式)的相关知识,掌握通项公式:,以及对数列的前n项和的理解,了解数列{an}的前n项和sn与通项an的关系

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f (x)=(x+1)lnx﹣a (x﹣1)在x=e处的切线与y轴相交于点(0,2﹣e).
(1)求a的值;
(2)函数f (x)能否在x=1处取得极值?若能取得,求此极值;若不能,请说明理由.
(3)当1<x<2时,试比较 大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=1﹣ax+lnx,(x>0),函数g(x)满足g(x)=x﹣1,(x∈R).
(1)若函数f(x)在x=1时存在极值,求a的值;
(2)在(1)的条件下,当x>1时,blnx< ,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥P﹣ABC中,PA⊥底面ABC,∠BAC=90°.点D,E,N分别为棱PA,PC,BC的中点,M是线段AD的中点,PA=AC=4,AB=2.

(Ⅰ)求证:MN∥平面BDE;
(Ⅱ)求二面角C﹣EM﹣N的正弦值;
(Ⅲ)已知点H在棱PA上,且直线NH与直线BE所成角的余弦值为 ,求线段AH的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量=(1,-3,2),=(-2,1,1),点A(-3,-1,4),B(-2,-2,2).

(1)求|2+|;

(2)在直线AB上,是否存在一点E,使得?(O为原点)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015春西城区期末)执行如图所示的程序框图,输出的S值为(  )

A.2
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= cos(2x﹣ )﹣2sinxcosx.(13分)
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求证:当x∈[﹣ ]时,f(x)≥﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线lm,平面αβ,下列命题正确的是 (  )

A. lβlααβ

B. lβmβlαmααβ

C. lmlαmβαβ

D. lβmβlαmαlmMαβ

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3﹣2x+ex ,其中e是自然对数的底数.若f(a﹣1)+f(2a2)≤0.则实数a的取值范围是

查看答案和解析>>

同步练习册答案