精英家教网 > 高中数学 > 题目详情
(2013•陕西)(不等式选做题) 
已知a,b,m,n均为正数,且a+b=1,mn=2,则(am+bn)(bm+an)的最小值为
2
2
分析:利用二维形式的柯西不等式的代数形式:设a,b,c,d∈R 均为实数,则(a2+b2)(c2+d2)≥(ac+bd)2其中等号当且仅当
a
c
=
b
d
时成立,即可求出(am+bn)(bm+an)的最小值.
解答:解:根据二维形式的柯西不等式的代数形式:
(a2+b2)(c2+d2)≥(ac+bd)2
可得(am+bn)(bm+an)≥(
am
an
+
bn
bm
2
=mn(a+b)2
=2×1=2,当且仅当
am
an
=
bn
bm
即m=n时,取得最小值2.
故答案为:2.
点评:本小题主要考查二维形式的柯西不等式等基础知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•陕西)有7位歌手(1至7号)参加一场歌唱比赛,由500名大众评委现场投票决定歌手名次,根据年龄将大众评委分为5组,各组的人数如下:
组别 A B C D E
人数 50 100 150 150 50
(Ⅰ) 为了调查评委对7位歌手的支持状况,现用分层抽样方法从各组中抽取若干评委,其中从B组中抽取了6人.请将其余各组抽取的人数填入下表.
组别 A B C D E
人数 50 100 150 150 50
抽取人数 6
(Ⅱ) 在(Ⅰ)中,若A,B两组被抽到的评委中各有2人支持1号歌手,现从这两组被抽到的评委中分别任选1人,求这2人都支持1号歌手的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•陕西)已知点M(a,b)在圆O:x2+y2=1外,则直线ax+by=1与圆O的位置关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•陕西)设△ABC的内角A,B,C所对的边分别为a,b,c,若bcosC+ccosB=asinA,则△ABC的形状为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•陕西)已知向量
a
=(cosx,-
1
2
),
b
=(
3
sinx,cos2x),x∈R,设函数f(x)=
a
b

(Ⅰ) 求f(x)的最小正周期.
(Ⅱ) 求f(x)在[0,
π
2
]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•陕西)设[x]表示不大于x的最大整数,则对任意实数x,y,有(  )

查看答案和解析>>

同步练习册答案