【题目】已知函数,.
(1)求函数的单调区间;
(2)讨论函数的零点的个数.
科目:高中数学 来源: 题型:
【题目】如图为正方体ABCD-A1B1C1D1,动点M从B1点出发,在正方体表面沿逆时针方向运动一周后,再回到B1的运动过程中,点M与平面A1DC1的距离保持不变,运动的路程x与l=MA1+MC1+MD之间满足函数关系l=f(x),则此函数图象大致是( )
A. B.
C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知常数,数列满足,.
(1)若,,求的值;
(2)在(1)的条件下,求数列的前项和;
(3)若数列中存在三项,,(且)依次成等差数列,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】贺先生想向银行贷款买辆新能源车,银行可以贷给贺先生N元,一年后需要一次性还1.02N元.
(1)贺先生发现一个投资理财方案:每个月月初投资元,共投资一年,每月的月收益率达到1%,于是贺先生决定贷款12元,按投资方案投资,求的值,使得贺先生用最终投所得的钱还清贷款后,还有120000的余额去旅游(精确到0.01元);
(2)贺先生又发现一个投资方案:第个月月初投资元共投资一年,每月的月收益率达到1%,则贺先生应贷款多少,使得用最终投资所得的钱还清后,还有120000的余额去旅游(精确到0.01元).
(参考数据,,)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数的图象的顶点坐标为,且过坐标原点.数列的前项和为,点在二次函数的图象上.
(Ⅰ)求数列的通项公式;
(Ⅱ)设,数列的前项和为,若对恒成立,求实数的取值范围;
(Ⅲ)在数列中是否存在这样一些项:,这些项都能够构成以为首项,为公比的等比数列?若存在,写出关于的表达式;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的前6项依次成等比数列,设公比为q(),数列从第5项开始各项依次为等差数列,其中,数列的前n项和为.
(1)求公比q及数列的通项公式;
(2)若,求项数n的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】举行动物运动会其中有小兔大兔接力赛跑一项,跑道从起点经过点再到终点,其中米,米,规定小兔跑第一棒从到,大兔在处接力完成跑第二棒从到,假定接力赛跑时小兔大兔的各自速度都是均匀的,且它们的速度之和为定值10米/秒,试问小兔和大兔应以怎样的速度接力赛跑,才能使接力赛成绩最好(所需时间最短),并求其最短时间.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com