精英家教网 > 高中数学 > 题目详情
曲线x2+y2=1经过φ:
x′=3x
y′=4y
变换后,得到的新曲线的方程为
 
考点:平面直角坐标轴中的伸缩变换
专题:圆锥曲线的定义、性质与方程
分析:直接利用变换的法则,求出新曲线的方程即可.
解答: 解:曲线x2+y2=1经过φ:
x′=3x
y′=4y
变换后,即
x=
x′
3
y=
y′
4
,代入圆的方程.
可得
x′2
9
+
y′2
16
=1
,即所求新曲线方程为:
x2
9
+
y2
16
=1

故答案为:
x2
9
+
y2
16
=1
点评:本题考查曲线分的求法,变换的应用,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列函数是偶函数的是(  )
A、y=x
B、y=x2,x∈[0,1]
C、y=x -
1
2
D、y=2x2-3

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax3+bx+c(a≠0)为奇函数,其图象在点(1,f(1))处的切线与直线x+6y-7=0垂直,且在x2=2处取得极值.
(Ⅰ)求a,b,c的值;
(Ⅱ)求函数f(x)在[-1,3]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(-2,5)与向量
b
=(λ,2)不共线,又函数f(x)=(x
a
+
b
)•(
a
-x
b
)在(0,+∞)有最大值,则λ的取值范围是(  )
A、λ<5
B、-5<λ<5
C、λ<5,且λ≠-
4
5
D、-5<λ<5,且λ≠-
4
5

查看答案和解析>>

科目:高中数学 来源: 题型:

若点P是△ABC的外心,且
PA
+
PB
PC
=
0
,∠C=60°,则实数λ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

方程|x-3|=lgx根的个数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知偶函数f(x)的定义域为[-1,1],且f(-1)=1,若对任意x1,x2∈[-1,0],x1≠x2,都有
f(x1)-f(x2)
x2-x1
>0成立.
(1)解不等式f(x+
1
2
)<f(x-1)

(2)若f(x)≤t2-2at+1对x∈[-1,1]和a∈[-1,1]恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知几何体的三视图如下,试求它的表面积和体积.单位:cm.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sin(ωx+Φ)(ω>0),如果存在实数x1,使得对任意的实数x,都有f(x1)≤f(x)≤f(x1+2011)成立,则ω的最小值为
 

查看答案和解析>>

同步练习册答案