(本题满分14分)如图,α⊥β,α∩β=l , A∈α, B∈β,点A在直线l 上的射影为A1, 点B在l的射影为B1,已知AB=2,AA1=1, BB1=, 求:
(Ⅰ) 直线AB分别与平面α,β所成角的大小;
(Ⅱ)二面角A1-AB-B1的余弦值.
解法一: (Ⅰ)如图, 连接A1B,AB1, ∵α⊥β, α∩β=l ,AA1⊥l, BB1⊥l,
∴AA1⊥β, BB1⊥α. 则∠BAB1,∠ABA1分别是AB与α和β所成的角.
Rt△BB1A中, BB1= , AB=2, ∴sin∠BAB1 = = . ∴∠BAB1=45°.
Rt△AA1B中, AA1=1,AB=2, sin∠ABA1= = , ∴∠ABA1= 30°.
故AB与平面α,β所成的角分别是45°,30°. ……………………………… 6分
(Ⅱ) ∵BB1⊥α, ∴平面ABB1⊥α.在平面α内过A1作A1E⊥AB1交AB1于E,则A1E⊥平面AB1B.过E作EF⊥AB交AB于F,连接A1F,则由三垂线定理得A1F⊥AB, ∴∠A1FE就是所求二面角的平面角.
在Rt△ABB1中,∠BAB1=45°,∴AB1=B1B=. ∴Rt△AA1B中,A1B== = . 由AA1·A1B=A1F·AB得 A1F== = ,
∴在Rt△A1EF中,sin∠A1FE = = , ∴二面角A1-AB-B1的余弦值.
解法二: (Ⅰ)同解法一.
(Ⅱ) 如图,建立坐标系, 则A1(0,0,0),A(0,0,1),B1(0,1,0),B(,1,0).在AB上取一点F(x,y,z),则存在t∈R,使得=t , 即(x,y,z-1)=t(,1,-1), ∴点F的坐标为(t, t,1-t).要使⊥,须·=0, 即(t, t,1-t) ·(,1,-1)=0, 2t+t-(1-t)=0,解得t= , ∴点F的坐标为(,-, ), ∴=(,, ). 设E为AB1的中点,则点E的坐标为(0,, ). ∴=(,-,).
又·=(,-,)·(,1,-1)= - - =0, ∴⊥, ∴∠A1FE为所求二面角的平面角.
又cos∠A1FE= = = = = ,
∴二面角A1-AB-B1的余弦值. ……………………………… 14
【解析】略
科目:高中数学 来源: 题型:
(本题满分14分)如图2,为了绿化城市,拟在矩形区域ABCD内建一个矩形草坪,另外△AEF内部有一文物保护区域不能占用,经过测量AB=100m,BC=80m,AE=30m,AF=20m,应该如何设计才能使草坪面积最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
(本题满分14分)
如图,已知直三棱柱ABC—A1B1C1,,E是棱CC1上动点,F是AB中点,
(1)求证:;
(2)当E是棱CC1中点时,求证:CF//平面AEB1;
(3)在棱CC1上是否存在点E,使得二面角A—EB1—B的大小是45°,若存在,求CE的长,若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源:2011-2012学年山东省济宁市高三第二次月考文科数学 题型:解答题
(本题满分14分)如图,在四棱锥E-ABCD中,底面ABCD为正方形, AE⊥平面CDE,已知AE=3,DE=4.
(Ⅰ)若F为DE的中点,求证:BE//平面ACF;
(Ⅱ)求直线BE与平面ABCD所成角的正弦值
查看答案和解析>>
科目:高中数学 来源:2011年福建省高二上学期期末考试数学理卷 题型:解答题
(本题满分14分)如图,正方形、的边长都是1,平面平面,点在上移动,点在上移动,若()
(I)求的长;
(II)为何值时,的长最小;
(III)当的长最小时,求面与面所成锐二面角余弦值的大小.
查看答案和解析>>
科目:高中数学 来源:杭州市2010年第二次高考科目教学质量检测 题型:解答题
(本题满分14分)如图,矩形BCC1B1所在平面垂直于三角形ABC所在平面,BB1=CC1=AC=2,,又E、F分别是C1A和C1B的中点。
(1)求证:EF//平面ABC;
(2)求证:平面平面C1CBB1;
(3)求异面直线AB与EB1所成的角。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com