精英家教网 > 高中数学 > 题目详情

【题目】若四面体的三组对棱分别相等,即,给出下列结论:

①四面体每组对棱相互垂直;

②四面体每个面的面积相等;

③从四面体每个顶点出发的三条棱两两夹角之和大于而小于

④连接四面体每组对棱中点的线段相互垂直平分;

⑤从四面体每个顶点出发的三条棱的长可作为一个三角形的三边长.

其中正确结论的个数是(

A.2B.3C.4D.5

【答案】B

【解析】

由条件可以知道四面体的棱为长方体的面对角线,根据长方体的性质判断各结论是否正确.

对于①,把四面体补形为平行六面体,由三组对棱分别相等可知此平行六面体为长方体,如图所示,只有长方体为正方体时①才正确,故①不正确;

对于②;在长方体中,有

四面体每个面的面积相等,故②正确.

对于③,以为例说明,

,

,

故③不正确;

对于④,连接四面体对棱中点的线段即是连接长方体对面中心的线段,显然相互垂直平分,故④正确;

对于⑤,以为例进行说明,

三边长可构成,可以作为一个三角形的三边长.同理可得从其他顶点出发的三条棱的长也可以作为一个三角形的三边长,故⑤正确.

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】半期考试后,班长小王统计了50名同学的数学成绩,绘制频率分布直方图如图所示.

根据频率分布直方图,估计这50名同学的数学平均成绩;

用分层抽样的方法从成绩低于115的同学中抽取6名,再在抽取的这6名同学中任选2名,求这两名同学数学成绩均在中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,设

(Ⅰ)求函数的周期及单调增区间。

(Ⅱ)设的内角的对边分别为,已知 ,求边的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解甲、乙两个工厂生产的轮胎的宽度是否达标,分别从两厂随机各选取了个轮胎,将每个轮胎的宽度(单位: )记录下来并绘制出如下的折线图:

(1)分别计算甲、乙两厂提供的个轮胎宽度的平均值;

(2)轮胎的宽度在内,则称这个轮胎是标准轮胎.

(i)若从甲乙提供的个轮胎中随机选取个,求所选的轮胎是标准轮胎的概率

(ii)试比较甲、乙两厂分别提供的个轮胎中所有标准轮胎宽度的方差大小,根据两厂的标准轮胎宽度的平均水平及其波动情况,判断这两个工厂哪个厂的轮胎相对更好?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P-ABCD的底面是矩形,PA⊥平面ABCDEF分别是ABPD的中点,且PA=AD

(Ⅰ)求证:AF∥平面PEC

(Ⅱ)求证:平面PEC⊥平面PCD

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某班学生喜好体育运动是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:

喜好体育运动

不喜好体育运动

男生

5

女生

10

已知按喜好体育运动与否,采用分层抽样法抽取容量为10的样本,则抽到喜好体育运动的人数为6

1)请将上面的列联表补充完整;

2)能否在犯错概率不超过0.01的前提下认为喜好体育运动与性别有关?说明你的理由;

3)在上述喜好体育运动的6人中随机抽取两人,求恰好抽到一男一女的概率.

参考公式:

独立性检验临界值表:

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为集合的任意三个元子集,且.问:是否存在,使得其中某两个数的和等于第三个数?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】个元素的子集中,称元素之和为偶数的子集为偶集合,元素之和为奇数的子集为奇集合.试求偶集合数目与奇集合数目之差.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若,求曲线在点处的切线方程;

2)讨论函数的单调区间.

查看答案和解析>>

同步练习册答案