精英家教网 > 高中数学 > 题目详情
函数y=2-
-x2+4x
的值域是(  )
A、[-2,2]
B、[1,2]
C、[0,2]
D、[-
2
2
]
考点:函数的值域
专题:计算题,函数的性质及应用
分析:确定t=-x2+4x的范围,即可求出函数y=2-
-x2+4x
的值域.
解答: 解:令t=-x2+4x=-(x-2)2+4,则t≤4,
∴0≤
-x2+4x
≤2
∴-2≤-
-x2+4x
≤0,
∴0≤2-
-x2+4x
≤2,
∴函数y=2-
-x2+4x
的值域是[0,2].
故选:C.
点评:本题考查函数的值域,考查学生的计算能力,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在空间中,下列正确命题的个数是(  )
①若
a
b
=0,则
a
=0或
b
=0;
②(
a
b
c
=
a
b
c
);
p
2
q
2=(
p
q
2
④|
p
+
q
||
p
-
q
|=|
p
-
q
|;
a
与(
a
b
c
-(
a
c
b
垂直.
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

仓库有某产品50万元,每年综合消耗4%,若一直售不出去,多少年后降到36万元?(精确到1年)

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数的值域为[1,+∞)的是(  )
A、y=(
1
2
x-1
B、y=(
1
2
x+1
C、y=log2(x2-2x+2)
D、y=log2(x2-2x+3)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,水塔CD的高是30m,在塔顶C处测得,河对岸两个目标A,B的俯角分别为30°和45°,并且测得∠ACB=135°,求A,B的距离

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的奇函数f(x)满足f(x+2)=f(x),且当x∈(0,1)时,f(x)=tan
πx
2
,则f(x)在[0,5]上的零点个数是(  )
A、3B、4C、5D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四棱锥p-ABCD中,面PAB⊥面ABCD,且BC∥AD,BC⊥AB,且PA=PB=4,AB=2,BC=1,AD=3,O为AB的中点.
(1)证明:面PCD⊥面POC;
(2)在PD上确定一点E使OE∥面PBC,求点E的位置;
(2)求二面角B-PC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设A为△ABC内角,满足sinA+cosA=a,当-1<a<0时,则△ABC是
 
三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l⊥平面α,直线m?平面β,则下列四个命题中,真命题是(  )
A、l∥m⇒α⊥β
B、α⊥β⇒l∥m
C、l⊥m⇒α∥β
D、l⊥m⇒α⊥β

查看答案和解析>>

同步练习册答案