精英家教网 > 高中数学 > 题目详情
16.不等式组$\left\{\begin{array}{l}{x+3(5-x)>2}\\{x-3>\frac{x}{2}-\frac{1}{4}}\end{array}\right.$的解集是{x|$\frac{11}{2}$<x<$\frac{13}{2}$}.

分析 分别求出每个不等式的解集,然后求其交集即可.

解答 解:由x+3(5-x)>2,解得x<$\frac{13}{2}$,
由x-3>$\frac{x}{2}$-$\frac{1}{4}$,解得x>$\frac{11}{2}$,
∴不等式组的解为$\frac{11}{2}$<x<$\frac{13}{2}$,
∴不等式组的解集为{x|$\frac{11}{2}$<x<$\frac{13}{2}$}.
故答案为:{x|$\frac{11}{2}$<x<$\frac{13}{2}$}.

点评 本题考查了不等式组的解集的求法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.有下列五个命题:
①函数f(x)=$\frac{|x|}{|x-2|}$是偶函数;
②函数y=$\sqrt{x-1}$的值域为{y|y≥0};
③已知集合A={-1,3},B={x|ax-1=0,a∈R},若A∪B=A,则a的取值集合为$\left\{{-1,\frac{1}{3}}\right\}$
④关于x的一元二次方程x2+mx+2m+1=0的一个根大于1,一个根小于1,则实数m 的取值范围是$\left\{{m|m<-\frac{2}{3}}\right\}$;
⑤若f(x)的定义域为R,且在(-∞,+∞)上是增函数,a∈R,且a≠$\frac{1}{2}$,则$f(\frac{3}{4})$与f(a2-a+1)的大小关系是$f(\frac{3}{4})<f({a^2}-a+1)$.
你认为正确命题的序号为:②④⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设P是不等式组$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{x+3y≤1}\end{array}\right.$表示的平面区域内的任意一点,向量$\overrightarrow{m}$=(-1,1),$\overrightarrow{n}$=(2,-1),若$\overrightarrow{OP}=λ\overrightarrow m+μ\overrightarrow n$,则$\frac{μ}{λ+1}$的取值范围(  )
A.[-$\frac{1}{2}$,2]B.[0,1]C.[$\frac{1}{2}$,1]D.[0,$\frac{1}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知A(m,-m+3),B(2,m-1),C(-1,4),直线AC的斜率等于直线BC的斜率的3倍,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.写出一个满足f($\frac{1}{x}$)=-f(x)的偶函数的函数解析式f(x)=0,x≠0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设a>-b,则下列不等式中,成立的是(  )
A.a(a+b)2<-b(a+b)2B.a(a+b)2>-b(a+b)2C.a(a+b)2≤-b(a+b)2D.a(a+b)2≥-b(a+b)2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.定义移动运算“⊕”,对于任意正整数n满足以下运算:(1)1⊕1=1;(2)(n+1)⊕1=2+n⊕1,则n⊕1用含n的代数式可表示为(  )
A.2n-1B.nC.2n-1D.2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,四棱锥P-ABCD中,底面ABCD为平行四边形,PD⊥底面ABCD,AB=2AD,∠ADB=90°,
(1)证明PA⊥BD;
(2)设PD=AD=1,求三棱锥D-PBC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知双曲线$\frac{x^2}{4}-{y^2}=1$,过点O(0,0)作直线l与双曲线仅有一个公共点,这样的直线l共有(  )
A.0条B.2条C.4条D.无数条

查看答案和解析>>

同步练习册答案