精英家教网 > 高中数学 > 题目详情
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
1
2
,以原点为圆心,椭圆的短半轴为半径的圆与直线x-y+
6
=0
相切,过点P(4,0)且不垂直于x轴直线l与椭圆C相交于A、B两点.
(1)求椭圆C的方程;
(2)求
OA
OB
的取值范围;
(3)若B点在于x轴的对称点是E,证明:直线AE与x轴相交于定点.
分析:(1)由题意知,
c
a
=
1
2
,利用点到直线的距离公式可求b,结合a2=b2+c2可求a,即可求解
(2)由题意设直线l的方程为y=k(x-4),联立直线与椭圆方程,设A(x1,y1),B (x2,y2),根据方程的根与系数关系求出x1+x2,x1x2,由△>0可求k的范围,然后代入
.
OA
OB
=x1x2+y1y2=x1x2+k2(x1-4)(x2-4)=(1+k2)x1x2-4k2(x1+x2)+16k2中即可得关于k的方程,结合k的范围可求
OA
OB
的范围
(3)由B,E关于x轴对称可得E(x2,-y2),写出AE的方程,令y=0,结合(2)可求
解答:(1)解:由题意知,
c
a
=
1
2
6
2
=b
即b=
3

又a2=b2+c2
∴a=2,b=
3

故椭圆的方程为
x2
4
+
y2
3
=1
(2分)
(2)解:由题意知直线l的斜率存在,设直线l的方程为y=k(x-4)
y=k(x-4)
x2
4
+
y2
3
=1
可得:(3+4k2)x2-32k2x+64k2-12=0(4分)
设A(x1,y1),B (x2,y2),则△=322k4-4(3+4k2)(64k2-12)>0
0≤k2
1
4
(6分)
∴x1+x2=
32k2
3+4k2
,x1x2=
64k2-12
3+4k2

.
OA
OB
=x1x2+y1y2=x1x2+k2(x1-4)(x2-4)
=(1+k2)x1x2-4k2(x1+x2)+16k2
=(1+k2)•
64k2-12
3+4k2
-4k2
32k2
3+4k2
+16k2

=25-
87
4k2+3

0≤k2
1
4

-
87
3
≤-
87
4k2+3
<-
87
4

-4≤25-
87
4k2+3
13
4

OA
OB
∈[-4,
13
4

(3)证明:∵B,E关于x轴对称
∴可设E(x2,-y2
∴直线AE的方程为y-y1=
y1+y2
x1-x2
(x-x1)

令y=0可得x=x1-
y1(x1-x2)
y1+y2

∵y1=k(x1-4),y2=k(x2-4)
x=
2x1x2-4(x1+x2)
x1+x2-8
=
64k2-12
3+4k2
-4×
32k2
3+4k2
32k2
3+4k2
-8
=1
∴直线AE与x轴交于定点(1,0)
点评:本题主要考查了利用椭圆的性质求解椭圆方程及直线与椭圆相交关系的应用,方程思想的应用及向量的数量积的坐标表示等知识的综合应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
1
2
,且经过点P(1,
3
2
)

(1)求椭圆C的方程;
(2)设F是椭圆C的左焦,判断以PF为直径的圆与以椭圆长轴为直径的圆的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的短轴长为2
3
,右焦点F与抛物线y2=4x的焦点重合,O为坐标原点.
(1)求椭圆C的方程;
(2)设A、B是椭圆C上的不同两点,点D(-4,0),且满足
DA
DB
,若λ∈[
3
8
1
2
],求直线AB的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)经过点A(1,
3
2
),且离心率e=
3
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)过点B(-1,0)能否作出直线l,使l与椭圆C交于M、N两点,且以MN为直径的圆经过坐标原点O.若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•房山区二模)已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的长轴长是4,离心率为
1
2

(Ⅰ)求椭圆方程;
(Ⅱ)设过点P(0,-2)的直线l交椭圆于M,N两点,且M,N不与椭圆的顶点重合,若以MN为直径的圆过椭圆C的右顶点A,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的短轴长为2,离心率为
2
2
,设过右焦点的直线l与椭圆C交于不同的两点A,B,过A,B作直线x=2的垂线AP,BQ,垂足分别为P,Q.记λ=
AP+BQ
PQ
,若直线l的斜率k≥
3
,则λ的取值范围为
 

查看答案和解析>>

同步练习册答案