精英家教网 > 高中数学 > 题目详情
2.已知正方体ABCD-A1B1C1D1,过A1点可作    条直线与直线AC和BC1都成60°角(  )
A.1B.2C.3D.4

分析 因为AD1∥BC1,过A1在空间作直线l,使l与直线AC和BC1所成的角都等于 600,可转化为过点A在空间作直线l,使l与直线AC和AD1所成的角都等于 600.可分在平面ACD1内和在平面ACD1外两种情况寻找.因为要与直线AC和AD1所成的角都相等,故在平面ACD1内可考虑角平分线;在平面AC11外可将角平分线绕点A旋转考虑.

解答 解:因为AD1∥BC1,所以过A1在空间作直线l,使l与直线AC和BC1
成的角都等于 60°,即过点A在空间作直线l,使l与直线AC和AD1
成的角都等于 60°.
因为∠CAD1=60°,∠CAD1的外角平分线与AC和AD1所成的角相等,
均为60°,所以在平面ACD1内有一条满足要求.
因为∠CAD1的角平分线与AC和AD1所成的角相等,均为30°,
将角平分线绕点A向上转动到与面ACD1垂直的过程中,
存在两条直线与直线AC和AD1所成的角都等于 60°;
故符合条件的直线有3条.
故选:C.

点评 本题考查异面直线所成角的问题,考查空间想象能力和转化能力.在解决本题的过程中,转化思想很重要,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.在复平面内,复数$\frac{-2-3i}{i}$对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若cosα>0,则(  )
A.tanαsinα≥0B.sin2α≤0C.sinα≤0D.cos2α<0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数 f(x)的定义域为 A,若当f(x1)=f(x2)(x1,x2∈A)时,总有x1=x2,则称 f(x)为单值函数.例如,函数f(x)=2x+1(x∈R)是单值函数.给出下列命题:
①函数f(x)=x2(x∈R)是单值函数;
②函数f(x)=2x(x∈R)是单值函数;③若f(x)为单值函数,x1,x2∈A,且x1≠x2,则f(x1)≠f(x2);
④函数f(x)=$\left\{\begin{array}{l}{\sqrt{x},x≥0}\\{(\frac{1}{2})^{x}-1,x<0}\end{array}\right.$是单值函数.
其中的真命题是②③.(写出所有真命题的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列说法中正确的个数有(  )
①两平面平行,夹在两平面间的平行线段相等;
②两平面平行,夹在两平面间的相等的线段平行;
③两条直线被三个平行平面所截,截得的线段对应成比例;
④如果夹在两平面间的三条平行线段相等,那么这两个平面平行.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.各项为正数的数列{an} 的前n项和为Sn,且满足:Sn=$\frac{1}{4}$an2+$\frac{1}{2}$an+$\frac{1}{4}$(n∈N+).
(Ⅰ)求an
(Ⅱ)设函数f(n)=$\left\{\begin{array}{l}{{a}_{n},n为奇数}\\{f(\frac{n}{2}),n为偶数}\end{array}\right.$,Cn=f(2n+4)(n∈N+),求数列{Cn}的前n项和Tn..

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数f(x)=loga(4x-x2-3)(0<a<1)的单调增区间是(2,3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若函数f(x+1)的定义域是[-2,4],则函数f(2x-1)的定义域是[0,3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)=ln(2x+$\sqrt{4{x}^{2}+1}$)的奇偶性是(  )
A.奇函数B.偶函数
C.既不是奇函数也不是偶函数D.既是奇函数也是偶函数

查看答案和解析>>

同步练习册答案