精英家教网 > 高中数学 > 题目详情

【题目】对于函数f(x)定义域内的任意x1 , x2(x1≠x2),有以下结论:
①f(0)=1;
②f(1)=0
③f(x1+x2)=f(x1)f(x2
④f(x1x2)=f(x1)+f(x2
⑤f( )<
⑥f( )>
当f(x)=2x时,则上述结论中成立的是(填入你认为正确的所有结论的序号)

【答案】①③⑤
【解析】解:对于①:f(0)=20=1,故①正确;
对于②:f(1)=2,故②错误;
对于③:根据分数指数幂的运算性质可知,f(x1+x2)=2x1+x2= =f(x1)f(x2),故③正确;
对于④:根据分数指数幂的运算性质可知,f(x1x2)= = .则f(x1x2)≠f(x1)+f(x2),故④错误;
对于⑤⑥:根据基本不等式和分数指数幂的运算性质可知.由于 = =
所以 ,故⑤正确,⑥错误.
所以答案是:①③⑤.
【考点精析】认真审题,首先需要了解命题的真假判断与应用(两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣(a+1)x+1(a∈R)
(1)若关于x的不等式f(x)>0的解集为R,求实数a的取值范围;
(2)若关于x的不等式f(x)≤0的解集为P,集合Q={x|0≤x≤1},若P∩Q=,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=lg(ax﹣1)﹣lg(x﹣1)在区间[2,+∞)上是增函数,则a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且过点

(1)求E的方程;

2)若直线E相交于两点,且为坐标原点)的斜率之和为2,求点到直线的距离的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x),g(x)分别是R上的奇函数、偶函数,且满足f(x)+g(x)=2x , 则有(
A.f(3)<g(0)<f(4)
B.g(0)<f(4)<f(3)
C.g(0)<f(3)<f(4)
D.f(3)<f(4)<g(0)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过点作一直线与抛物线交于两点,点是抛物线上到直线的距离最小的点,直线与直线交于点.

()求点的坐标;

()求证:直线平行于抛物线的对称轴.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知,在直角坐标系中,直线的参数方程为为参数);在以坐标原点为极点, 轴的正半轴为极轴的极坐标系中,直线的极坐标方程是.

(Ⅰ)求证:

(Ⅱ)设点的极坐标为 为直线 的交点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知离心率为 的椭圆 过点M(2,1),O为坐标原点,平行于OM的直线i交椭圆C于不同的两点A、B.
(1)求椭圆C的方程;
(2)记直线MB、MA与x轴的交点分别为P、Q,若MP斜率为k1 , MQ斜率为k2 , 求k1+k2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面四个函数:(1)y=1﹣x;(2)y=2x﹣1;(3)y=x2﹣1;(4)y= ,其中定义域与值域相同的函数有(
A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

同步练习册答案