【题目】对于函数f(x)定义域内的任意x1 , x2(x1≠x2),有以下结论:
①f(0)=1;
②f(1)=0
③f(x1+x2)=f(x1)f(x2)
④f(x1x2)=f(x1)+f(x2)
⑤f( )<
⑥f( )>
当f(x)=2x时,则上述结论中成立的是(填入你认为正确的所有结论的序号)
【答案】①③⑤
【解析】解:对于①:f(0)=20=1,故①正确;
对于②:f(1)=2,故②错误;
对于③:根据分数指数幂的运算性质可知,f(x1+x2)=2x1+x2= =f(x1)f(x2),故③正确;
对于④:根据分数指数幂的运算性质可知,f(x1x2)= = , .则f(x1x2)≠f(x1)+f(x2),故④错误;
对于⑤⑥:根据基本不等式和分数指数幂的运算性质可知.由于 = , = ,
所以 ,故⑤正确,⑥错误.
所以答案是:①③⑤.
【考点精析】认真审题,首先需要了解命题的真假判断与应用(两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系).
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2﹣(a+1)x+1(a∈R)
(1)若关于x的不等式f(x)>0的解集为R,求实数a的取值范围;
(2)若关于x的不等式f(x)≤0的解集为P,集合Q={x|0≤x≤1},若P∩Q=,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数f(x),g(x)分别是R上的奇函数、偶函数,且满足f(x)+g(x)=2x , 则有( )
A.f(3)<g(0)<f(4)
B.g(0)<f(4)<f(3)
C.g(0)<f(3)<f(4)
D.f(3)<f(4)<g(0)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过点作一直线与抛物线交于两点,点是抛物线上到直线: 的距离最小的点,直线与直线交于点.
(Ⅰ)求点的坐标;
(Ⅱ)求证:直线平行于抛物线的对称轴.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知,在直角坐标系中,直线的参数方程为(为参数);在以坐标原点为极点, 轴的正半轴为极轴的极坐标系中,直线的极坐标方程是.
(Ⅰ)求证: ;
(Ⅱ)设点的极坐标为, 为直线, 的交点,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知离心率为 的椭圆 过点M(2,1),O为坐标原点,平行于OM的直线i交椭圆C于不同的两点A、B.
(1)求椭圆C的方程;
(2)记直线MB、MA与x轴的交点分别为P、Q,若MP斜率为k1 , MQ斜率为k2 , 求k1+k2 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下面四个函数:(1)y=1﹣x;(2)y=2x﹣1;(3)y=x2﹣1;(4)y= ,其中定义域与值域相同的函数有( )
A.1个
B.2个
C.3个
D.4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com